Techniques for Nuclear and Particle Physics Experiments [E-Book] : A How-to Approach / by William R. Leo.
Leo, William R., (author)
Second Revised Edition.
Berlin, Heidelberg : Springer, 1994
XVIII, 382 p. 12 illus. online resource.
englisch
9783642579202
10.1007/978-3-642-57920-2
Full Text
Table of Contents:
  • 1. Basic Nuclear Processes in Radioactive Sources
  • 1.1 Nuclear Level Diagrams
  • 1.2 Alpha Decay
  • 1.3 Beta Decay
  • 1.4 Electron Capture (EC)
  • 1.5 Gamma Emission
  • 1.5.1 Isomeric States
  • 1.6 Annihilation Radiation
  • 1.7 Internal Conversion
  • 1.8 Auger Electrons
  • 1.9 Neutron Sources
  • 1.9.1 Spontaneous Fission
  • 1.9.2 Nuclear Reactions
  • 1.10 Source Activity Units
  • 1.11 The Radioactive Decay Law
  • 1.11.1 Fluctuations in Radioactive Decay
  • 1.11.2 Radioactive Decay Chains
  • 1.11.3 Radioisotope Production by Irradiation
  • 2. Passage of Radiation Through Matter
  • 2.1 Preliminary Notions and Definitions
  • 2.1.1 The Cross Section
  • 2.1.2 Interaction Probability in a Distance x. Mean Free Path
  • 2.1.3 Surface Density Units
  • 2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions
  • 2.2.1 Bohr’s Calculation — The Classical Case
  • 2.2.2 The Bethe-Bloch Formula
  • 2.2.3 Energy Dependence
  • 2.2.4 Scaling Laws for dE/dx
  • 2.2.5 Mass Stopping Power
  • 2.2.6 dE/dx for Mixtures and Compounds
  • 2.2.7 Limitations of the Bethe-Bloch Formula and Other Effects
  • 2.2.8 Channeling
  • 2.2.9 Range
  • 2.3 Cherenkov Radiation
  • 2.4 Energy Loss of Electrons and Positrons
  • 2.4.1 Collision Loss
  • 2.4.2 Energy Loss by Radiation: Bremsstrahlung
  • 2.4.3 Electron-Electron Bremsstrahlung
  • 2.4.4 Critical Energy
  • 2.4.5 Radiation Length
  • 2.4.6 Range of Electrons
  • 2.4.7 The Absorption of ? Electrons
  • 2.5 Multiple Coulomb Scattering
  • 2.5.1 Multiple Scattering in the Gaussian Approximation
  • 2.5.2 Backscattering of Low-Energy Electrons
  • 2.6 Energy Straggling: The Energy Loss Distribution
  • 2.6.1 Thick Absorbers: The Gaussian Limit
  • 2.6.2 Very Thick Absorbers
  • 2.6.3 Thin Absorbers: The Landau and Vavilov Theories
  • 2.7 The Interaction of Photons
  • 2.7.1 Photoelectric Effect
  • 2.7.2 Compton Scattering
  • 2.7.3 Pair Production
  • 2.7.4 Electron-Photon Showers
  • 2.7.5 The Total Absorption Coefficient and Photon Attenuation
  • 2.8 The Interaction of Neutrons
  • 2.8.1 Slowing Down of Neutrons. Moderation
  • 3. Radiation Protection. Biological Effects of Radiation
  • 3.1 Dosimetric Units
  • 3.1.1 The Roentgen
  • 3.1.2 Absorbed Dose
  • 3.1.3 Relative Biological Effectiveness (RBE)
  • 3.1.4 Equivalent Dose
  • 3.1.5 Effective Dose
  • 3.2 Typical Doses from Sources in the Environment
  • 3.3 Biological Effects
  • 3.3.1 High Doses Received in a Short Time
  • 3.3.2 Low-Level Doses
  • 3.4 Dose Limits
  • 3.5 Shielding
  • 3.6 Radiation Safety in the Nuclear Physics Laboratory
  • 4. Statistics and the Treatment of Experimental Data
  • 4.1 Characteristics of Probability Distributions
  • 4.1.1 Cumulative Distributions
  • 4.1.2 Expectation Values
  • 4.1.3 Distribution Moments. The Mean and Variance
  • 4.1.4 The Covariance
  • 4.2 Some Common Probability Distributions
  • 4.2.1 The Binomial Distribution
  • 4.2.2 The Poisson Distribution
  • 4.2.3 The Gaussian or Normal Distribution
  • 4.2.4 The Chi-Square Distribution
  • 4.3 Measurement Errors and the Measurement Process
  • 4.3.1 Systematic Errors
  • 4.3.2 Random Errors
  • 4.4 Sampling and Parameter Estimation. The Maximum Likelihood Method
  • 4.4.1 Sample Moments
  • 4.4.2 The Maximum Likelihood Method
  • 4.4.3 Estimator for the Poisson Distribution
  • 4.4.4 Estimators for the Gaussian Distribution
  • 4.4.5 The Weighted Mean
  • 4.5 Examples of Applications
  • 4.5.1 Mean and Error from a Series of Measurements
  • 4.5.2 Combining Data with Different Errors
  • 4.5.3 Determination of Count Rates and Their Errors
  • 4.5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed
  • 4.5.5 Distribution of Time Intervals Between Counts
  • 4.6 Propagation of Errors
  • 4.6.1 Examples
  • 4.7 Curve Fitting
  • 4.7.1 The Least Squares Method
  • 4.7.2 Linear Fits. The Straight Line
  • 4.7.3 Linear Fits When Both Variables Have Errors
  • 4.7.4 Nonlinear Fits
  • 4.8 Some General Rules for Rounding-off Numbers for Final Presentation
  • 5. General Characteristics of Detectors
  • 5.1 Sensitivity
  • 5.2 Detector Response
  • 5.3 Energy Resolution. The Fano Factor
  • 5.4 The Response Function
  • 5.5 Response Time
  • 5.6 Detector Efficiency
  • 5.7 Dead Time
  • 5.7.1 Measuring Dead Time
  • 6. Ionization Detectors
  • 6.1 Gaseous Ionization Detectors
  • 6.2 Ionization and Transport Phenomena in Gases
  • 6.2.1 Ionization Mechanisms
  • 6.2.2 Mean Number of Electron-Ion Pairs Created
  • 6.2.3 Recombination and Electron Attachment
  • 6.3 Transport of Electrons and Ions in Gases
  • 6.3.1 Diffusion
  • 6.3.2 Drift and Mobility
  • 6.4 Avalanche Multiplication
  • 6.5 The Cylindrical Proportional Counter
  • 6.5.1 Pulse Formation and Shape
  • 6.5.2 Choice of Fill Gas
  • 6.6 The Multiwire Proportional Chamber (MWPC)
  • 6.6.1 Basic Operating Principle
  • 6.6.2 Construction
  • 6.6.3 Chamber Gas
  • 6.6.4 Timing Resolution
  • 6.6.5 Readout Methods
  • 6.6.6 Track Clusters
  • 6.6.7 MWPC Efficiency
  • 6.7 The Drift Chamber
  • 6.7.1 Drift Gases
  • 6.7.2 Spatial Resolution
  • 6.7.3 Operation in Magnetic Fields
  • 6.8 The Time Projection Chamber (TPC)
  • 6.9 Liquid Ionization Detectors (LID)
  • 7. Scintillation Detectors
  • 7.1 General Characteristics
  • 7.2 Organic Scintillators
  • 7.2.1 Organic Crystals
  • 7.2.2 Organic Liquids
  • 7.2.3 Plastics
  • 7.3 Inorganic Crystals
  • 7.4 Gaseous Scintillators
  • 7.5 Glasses
  • 7.6 Light Output Response
  • 7.6.1 Linearity
  • 7.6.2 Temperature Dependence
  • 7.6.3 Pulse Shape Discrimination (PSD)
  • 7.7 Intrinsic Detection Efficiency for Various Radiations
  • 7.7.1 Heavy Ions
  • 7.7.2 Electrons
  • 7.7.3 Gamma Rays
  • 7.7.4 Neutrons
  • 8. Photomultipliers
  • 8.1 Basic Construction and Operation
  • 8.2 The Photocathode
  • 8.3 The Electron-Optical Input System
  • 8.4 The Electron-Multiplier Section
  • 8.4.1 Dynode Configurations
  • 8.4.2 Multiplier Response: The Single-Electron Spectrum
  • 8.5 Operating Parameters
  • 8.5.1 Gain and Voltage Supply
  • 8.5.2 Voltage Dividers
  • 8.5.3 Electrode Current. Linearity
  • 8.5.4 Pulse Shape
  • 8.6 Time Response and Resolution
  • 8.7 Noise
  • 8.7.1 Dark Current and Afterpulsing
  • 8.7.2 Statistical Noise
  • 8.8 Environmental Factors
  • 8.8.1 Exposure to Ambient Light
  • 8.8.2 Magnetic Fields
  • 8.8.3 Temperature Effects
  • 8.9 Gain Stability, Count Rate Shift
  • 9. Scintillation Detector Mounting and Operation
  • 9.1 Light Collection
  • 9.1.1 Reflection
  • 9.2 Coupling to the PM
  • 9.3 Multiple Photomultipliers
  • 9.4 Light Guides
  • 9.5 Fluorescent Radiation Converters
  • 9.6 Mounting a Scintillation Detector: An Example
  • 9.7 Scintillation Counter Operation
  • 9.7.1 Testing the Counter
  • 9.7.2 Adjusting the PM Voltage
  • 9.7.3 The Scintillation Counter Plateau
  • 9.7.4 Maintaining PM Gain
  • 10. Semiconductor Detectors
  • 10.1 Basic Semiconductor Properties
  • 10.1.1 Energy Band Structure
  • 10.1.2 Charge Carriers in Semiconductors
  • 10.1.3 Intrinsic Charge Carrier Concentration
  • 10.1.4 Mobility
  • 10.1.5 Recombination and Trapping
  • 10.2 Doped Semiconductors
  • 10.2.1 Compensation
  • 10.3 The np Semiconductor Junction. Depletion Depth
  • 10.3.1 The Depletion Depth
  • 10.3.2 Junction Capacitance
  • 10.3.3 Reversed Bias Junctions
  • 10.4 Detector Characteristics of Semiconductors
  • 10.4.1 Average Energy per Electron-Hole Pair
  • 10.4.2 Linearity
  • 10.4.3 The Fano Factor and Intrinsic Energy Resolution
  • 10.4.4 Leakage Current
  • 10.4.5 Sensitivity and Intrinsic Efficiency
  • 10.4.6 Pulse Shape.
  • Rise Time
  • 10.5 Silicon Diode Detectors
  • 10.5.1 Diffused Junction Diodes
  • 10.5.2 Surface Barrier Detectors (SSB)
  • 10.5.3 Ion-Implanted Diodes
  • 10.5.4 Lithium-Drifted Silicon Diodes — Si(Li)
  • 10.6 Position-Sensitive Detectors
  • 10.6.1 Continuous and Discrete Detectors
  • 10.6.2 Micro-Strip Detectors
  • 10.6.3 Novel Position-Sensing Detectors
  • 10.7 Germanium Detectors
  • 10.7.1 Lithium-Drifted Germanium — Ge(Li)
  • 10.7.2 Intrinsic Germanium
  • 10.7.3 Gamma Spectroscopy with Germanium Detectors
  • 10.8 Other Semiconductor Materials
  • 10.9 Operation of Semiconductor Detectors
  • 10.9.1 Bias Voltage
  • 10.9.2 Signal Amplification
  • 10.9.3 Temperature Effects
  • 10.9.4 Radiation Damage
  • 10.9.5 Plasma Effects
  • 11. Pulse Signals in Nuclear Electronics
  • 11.1 Pulse Signal Terminology
  • 11.2 Analog and Digital Signals
  • 11.3 Fast and Slow Signals
  • 11.4 The Frequency Domain. Bandwidth
  • 12. The NIM Standard
  • 12.1 Modules
  • 12.2 Power Bins
  • 12.3 NIM Logic Signals
  • 12.4 TTL and ECL Logic Signals
  • 12.5 Analog Signals
  • 13. Signal Transmission
  • 13.1 Coaxial Cables
  • 13.1.1 Line Constituents
  • 13.2 The General Wave Equation for a Coaxial Line
  • 13.3 The Ideal Lossless Cable
  • 13.3.1 Characteristic Impedance
  • 13.4 Reflections
  • 13.5 Cable Termination. Impedance Matching
  • 13.6 Losses in Coaxial Cables. Pulse Distortion
  • 13.6.1 Cable Response. Pulse Distortion
  • 14. Electronics for Pulse Signal Processing
  • 14.1 Preamplifiers
  • 14.1.1 Resistive vs Optical Feedback
  • 14.2 Main Amplifiers
  • 14.3 Pulse Shaping Networks in Amplifiers
  • 14.3.1 CR-RC Pulse Shaping
  • 14.3.2 Pole-Zero Cancellation and Baseline Restoration
  • 14.3.3 Double Differentiation or CR-RC-CR Shaping
  • 14.3.4 Semi-Gaussian Shaping
  • 14.3.5 Delay Line Shaping
  • 14.4 Biased Amplifiers
  • 14.5 Pulse Stretchers
  • 14.6 Linear Transmission Gate
  • 14.7 Fan-out and Fan-in
  • 14.8 Delay Lines
  • 14.9 Discriminators
  • 14.9.1 Shapers
  • 14.10 Single-Channel Analyzer (Differential Discriminator)
  • 14.11 Analog-to-Digital Converters (ADC or A/D)
  • 14.11.1 ADC Linearity
  • 14.12 Multichannel Analyzers
  • 14.13 Digital-to-Analog Converters (DAC or D/A)
  • 14.14 Time to Amplitude Converters (TAC or TPHC)
  • 14.15 Scalers
  • 14.16 Ratemeter
  • 14.17 Coincidence Units
  • 14.18 Majority Logic Units
  • 14.19 Flip-Flops
  • 14.20 Registers (Latches)
  • 14.21 Gate and Delay Generators
  • 14.22 Some Simple and Handy Circuits for Pulse Manipulation
  • 14.22.1 Attenuators
  • 14.22.2 Pulse Splitting
  • 14.22.3 .