Mechanics and Physics of Energy Density [E-Book] : Characterization of material/structure behaviour with and without damage / by George C. Sih, Emmanuel E. Gdoutos.
Sih, George C., (author)
Gdoutos, Emmanuel E., (author)
Dordrecht : Springer, 1992
XXIV, 210 p. online resource.
englisch
9789400919549
10.1007/978-94-009-1954-9
Engineering Application of Fracture Mechanics ; 9
Full Text
Table of Contents:
  • 1. Synchronization of thermal and mechanical disturbances in uniaxial specimens
  • 1.1 Introductory remarks
  • 1.2 System inhomogeneity and continuity
  • 1.3 Simultaneity of displacement and temperature change
  • 1.4 Isoenergy density theory
  • 1.5 Axisymmetric deformation
  • 1.6 Nonequilibrium response of cylindrical bar specimen in tension
  • 1.7 Conclusions
  • References
  • 2. Thoughts on energy density, fracture and thermal emission
  • 2.1 Introduction
  • 2.2 The F-111 wing pivot fitting
  • 2.3 Damage assessment of an F/A-18 stabilator
  • 2.4 The finite element model
  • 2.5 Thermoelastic evaluation of damage
  • 2.6 Stress fields from temperature measurements
  • 2.7 Conclusions
  • References
  • 3. Effects of fillers on fracture performance of thermoplastics: strain energy density criterion
  • 3.1 Introduction
  • 3.2 Experimental consideration
  • 3.3 Fracture analysis
  • 3.4 Strain energy density criterion
  • 3.5 Conclusions
  • References
  • 4. Strain energy density criterion applied to characterize damage in metal alloys
  • 4.1 Introduction
  • 4.2 Strain energy density criterion
  • 4.3 Thermal/mechanical interaction in solids
  • 4.4 Damage characterization
  • 4.5 Transition of micro- to macrodamage
  • 4.6 Concluding remarks
  • References
  • 5. Local and global instability in fracture mechanics
  • 5.1 Introduction
  • 5.2 Strain energy density fracture criterion
  • 5.3 Strain-hardening materials
  • 5.4 Strain-softening materials
  • 5.5 Size effects on strength and ductility
  • References
  • 6. A strain-rate dependent model for crack growth
  • 6.1 Introduction
  • 6.2 Description of the method
  • 6.3 Specimen geometry and material properties
  • 6.4 Stress analysis
  • 6.5 Crack growth initiation
  • 6.6 Concluding remarks
  • References
  • 7. Extrusion of metal bars through different shape die: damage evaluation by energy density theory
  • 7.1 Introduction
  • 7.2 Yielding/fracture initiation in plastic deformation
  • 7.3 Nonlinear behavior of extruded metal
  • 7.4 Analysis of failure initiation sites
  • 7.5 Conclusions 135 References
  • References
  • 8. Failure of a plate containing a partially bonded rigid fiber inclusion
  • 8.1 Introduction
  • 8.2 A partially bonded rigid elliptical inclusion in an infinite plate
  • 8.3 Local stress distribution and stress intensity factors
  • 8.4 Failure initiation from the crack tip or the fiber end
  • References
  • 9. Crack growth in rate sensitive solids
  • 9.1 Introductory remarks
  • 9.2 Sih criterion
  • 9.3 Linear viscoelastic solid
  • 9.4 Crack growth in uniformly applied stress field
  • 9.5 Conclusions
  • References
  • 10. Strain energy density criterion applied to mixed-mode cracking dominated by in-plane shear
  • 10.1 Preliminary remarks
  • 10.2 Sih’s strain energy density criterion
  • 10.3 Mixed-mode cracking dominated by in-plane shear
  • 10.4 Discussions
  • References
  • 11. Group-averaging methods for generating constitutive equations
  • 11.1 Introduction
  • 11.2 Generation of scalar-valued invariants
  • 11.3 Generation of tensor-valued invariant functions
  • 11.4 Applications
  • References
  • 12. A dislocation theory based on volume-to-surface ratio: fracture behavior of metals
  • 12.1 Introduction
  • 12.2 Super-dislocation model
  • 12.3 Plastic zone size
  • 12.4 Dislocation distribution in plastic zone
  • 12.5 Crack in semi-infinite medium
  • 12.6 Relation of volume/surface ratio to plate ligament
  • 12.7 Specimens with different volume/surface ratio
  • 12.8 Conclusions 191 References
  • 13. The effect of microcracks on energy density
  • 13.1 Introduction
  • 13.2 Microcracked solid with given crack density
  • 13.3 Microcrack nucleation
  • References
  • 14. Convex energy functions for two-sided solution bounds in elastomechanics
  • 14.1 Introduction
  • 14.2 General problem in elastostatics
  • 14.3 Convexity of strain energy and Hubert space: elastic system
  • 14.4 Global solution bounds
  • 14.5 Local solution bounds
  • 14.6 Concluding remarks
  • References.