A guide to elementary number theory / Underwood Dudley [EBook]
A guide to elementary number theory / Underwood Dudley [EBook]
"A Guide to Elementary Number Theory is a 140page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have halfforgotten it, and also for those who may have misspent their youth by not having a course in nu...
Personal Name(s):  Dudley, Underwood. 

Imprint: 
[Washington, D.C.] :
Mathematical Association of America,
c2009

Physical Description: 
x, 141 pages : illustrations 
Note: 
englisch 
Series Title: 
Dolciani mathematical expositions ;
no. 41 MAA guides ; no. 5 
Subject (LOC):  
Full Text 
Table of Contents:
 Greatest common divisors
 Unique factorization
 Linear Diophantine equations
 Congruences
 Linear congruences
 The Chinese remainder theorem
 Fermat's theorem
 Wilson's theorem
 The number of divisors of an integer
 The sum of the divisors of an integer
 Amicable numbers
 Perfect numbers
 Euler's theorem and function
 Primitive roots and orders
 Decimals
 Quadratic congruences
 Gauss's lemma
 The quadratic reciprocity theorem
 The Jacobi symbol
 Pythagorean triangles
 x⁴ + y⁴ [not equal] z⁴
 Sums of two squares
 Sums of three squares
 Sums of four squares
 Waring's problem
 Pell's equation
 Continued fractions
 Multigrades
 Carmichael numbers
 Sophie Germain primes
 The group of multiplicative functions
 Bounds for [pi](x)
 The sum of the reciprocals of the primes
 The Riemann hypothesis
 The prime number theorem
 The abc conjecture
 Factorization and testing for primes
 Algebraic and transcendental numbers
 Unsolved problems.