An introduction to bisimulation and coinduction [E-Book] / Davide Sangiorgi.
Sangiorgi, Davide, (author)
Cambridge : Cambridge University Press, 2012
1 online resource (xii, 247 pages)
englisch
9781107003637
9780511777110
Full Text
LEADER 02444nam a22003498i 4500
001 CR9780511777110
003 UkCbUP
008 100513s2012||||enk o ||1 0|eng|d
020 |a 9780511777110 
020 |a 9781107003637 
035 |a (Sirsi) a790707 
041 |a eng 
082 0 0 |a 004.01/5113  |2 23 
100 1 |a Sangiorgi, Davide,  |e author 
245 1 3 |a An introduction to bisimulation and coinduction  |h [E-Book] /  |c Davide Sangiorgi. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2012  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xii, 247 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 8 |a Towards bisimulation -- Coinduction and the duality with induction -- Algebraic properties of bisimilarity -- Processes with internal activities -- Other approaches to behavioural equivalences -- Refinements of simulation -- Basic observables. 
520 |a Induction is a pervasive tool in computer science and mathematics for defining objects and reasoning on them. Coinduction is the dual of induction and as such it brings in quite different tools. Today, it is widely used in computer science, but also in other fields, including artificial intelligence, cognitive science, mathematics, modal logics, philosophy and physics. The best known instance of coinduction is bisimulation, mainly employed to define and prove equalities among potentially infinite objects: processes, streams, non-well-founded sets, etc. This book presents bisimulation and coinduction: the fundamental concepts and techniques and the duality with induction. Each chapter contains exercises and selected solutions, enabling students to connect theory with practice. A special emphasis is placed on bisimulation as a behavioural equivalence for processes. Thus the book serves as an introduction to models for expressing processes (such as process calculi) and to the associated techniques of operational and algebraic analysis. 
650 0 |a Bisimulation. 
650 0 |a Coinduction (Mathematics) 
650 0 |a Modality (Logic) 
650 0 |a Induction (Mathematics) 
650 0 |a Computer science. 
856 4 0 |u https://doi.org/10.1017/CBO9780511777110  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(790707.1)  |w AUTO  |c 1  |i 790707-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE