Saddlepoint approximations with applications [E-Book] / Ronald W. Butler.
Butler, Ronald W., (author)
Cambridge : Cambridge University Press, 2007
1 online resource (xi, 564 pages)
Cambridge series on statistical and probabilistic mathematics ; 22
Full Text
LEADER 02788nam a22003138i 4500
001 CR9780511619083
003 UkCbUP
008 090915s2007||||enk o ||1 0|eng|d
020 |a 9780511619083 
020 |a 9780521872508 
035 |a (Sirsi) a791200 
041 |a eng 
082 0 4 |a 511.4  |2 22 
100 1 |a Butler, Ronald W.,  |e author 
245 1 0 |a Saddlepoint approximations with applications  |h [E-Book] /  |c Ronald W. Butler. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2007  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xi, 564 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a Cambridge series on statistical and probabilistic mathematics ;  |v 22 
500 |a englisch 
505 0 |a Fundamental approximations -- Properties and derivations -- Multivariate densities -- Conditional densities and distribution functions -- Exponential families and tilted distributions -- Further exponential family examples and theory -- Probability computation with p* -- Probabilities with r*-type approximations -- Nuisance parameters -- Sequential saddlepoint applications -- Applications to multivariate testing -- Ratios and roots of estimating equations -- First passge and time to event distributions -- Bootstrapping in the transform domain -- Bayesian applications -- Nonnormal bases. 
520 |a Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference. 
650 0 |a Method of steepest descent (Numerical analysis) 
856 4 0 |u  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(791200.1)  |w AUTO  |c 1  |i 791200-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE