Introduction to measure and integration [E-Book] / by S.J. Taylor.
Taylor, S. J., (author)
Kingman, J. F. C.
Cambridge : Cambridge University Press, 1973
1 online resource (vi, 266 pages)
englisch
9780521098045
9780511662478
Full Text
LEADER 01897nam a22003138i 4500
001 CR9780511662478
003 UkCbUP
008 091215s1973||||enk o ||1 0|eng|d
020 |a 9780511662478 
020 |a 9780521098045 
035 |a (Sirsi) a791453 
041 |a eng 
082 0 0 |a 515/.42  |2 19 
100 1 |a Taylor, S. J.,  |e author 
245 1 0 |a Introduction to measure and integration  |h [E-Book] /  |c by S.J. Taylor. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 1973  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (vi, 266 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
520 |a This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development. 
650 0 |a Measure theory. 
650 0 |a Integrals, Generalized. 
700 1 |a Kingman, J. F. C. 
856 4 0 |u https://doi.org/10.1017/CBO9780511662478  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(791453.1)  |w AUTO  |c 1  |i 791453-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE