Elasticity with mathematica : an introduction to continuum mechanics and linear elasticity [E-Book] / Andrei Constantinescu, Alexander Korsunsky.
Constantinescu, Andrei, (author)
Korsunsky, Alexander, (author)
Cambridge : Cambridge University Press, 2007
1 online resource (ix, 255 pages)
englisch
9780521842013
9781107406131
9780511546167
Full Text
LEADER 02604nam a22003258i 4500
001 CR9780511546167
003 UkCbUP
008 090508s2007||||enk o ||1 0|eng|d
020 |a 9780511546167 
020 |a 9780521842013 
020 |a 9781107406131 
035 |a (Sirsi) a791511 
041 |a eng 
082 0 0 |a 620.1/1232015118  |2 22 
100 1 |a Constantinescu, Andrei,  |e author 
245 1 0 |a Elasticity with mathematica :  |b an introduction to continuum mechanics and linear elasticity  |h [E-Book] /  |c Andrei Constantinescu, Alexander Korsunsky. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2007  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (ix, 255 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 0 |a Kinematics : displacements and strains -- Dynamics and statics : stresses and equilibrium -- Linear elasticity -- General principles in problems of elasticity -- Stress functions -- Displacement potentials -- Energy principles and variational formulations -- Appendix 1 : differential operators -- Appendix 2 : Mathematica tricks -- Appendix 3 : plotting parametric meshes. 
520 |a This book, first published in 2007, introduces key ideas and principles in the theory of elasticity with the help of symbolic computation. Differential and integral operators on vector and tensor fields of displacements, strains and stresses are considered on a consistent and rigorous basis with respect to curvilinear orthogonal coordinate systems. As a consequence, vector and tensor objects can be manipulated readily, and fundamental concepts can be illustrated and problems solved with ease. The method is illustrated using a variety of plane and three-dimensional elastic problems. General theorems, fundamental solutions, displacements and stress potentials are presented and discussed. The Rayleigh-Ritz method for obtaining approximate solutions is introduced for elastostatic and spectral analysis problems. Containing more than 60 exercises and solutions in the form of Mathematica notebooks that accompany every chapter, the reader can learn and master the techniques while applying them to a large range of practical and fundamental problems. 
650 0 |a Elasticity  |x Mathematical models. 
700 1 |a Korsunsky, Alexander,  |e author 
856 4 0 |u https://doi.org/10.1017/CBO9780511546167  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(791511.1)  |w AUTO  |c 1  |i 791511-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE