Lie groups, physics, and geometry : an introduction for physicists, engineers and chemists [E-Book] / Robert Gilmore.
Gilmore, Robert, (author)
Cambridge : Cambridge University Press, 2008
1 online resource (xi, 319 pages)
Full Text
LEADER 02380nam a22003138i 4500
001 CR9780511791390
003 UkCbUP
008 100611s2008||||enk o ||1 0|eng|d
020 |a 9780511791390 
020 |a 9780521884006 
035 |a (Sirsi) a791680 
041 |a eng 
082 0 4 |a 512.482  |2 22 
100 1 |a Gilmore, Robert,  |e author 
245 1 0 |a Lie groups, physics, and geometry :  |b an introduction for physicists, engineers and chemists  |h [E-Book] /  |c Robert Gilmore. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2008  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xi, 319 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 0 |a Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations. 
520 |a Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
856 4 0 |u  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(791680.1)  |w AUTO  |c 1  |i 791680-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE