Complex polynomials [E-Book] / T. Sheil-Small.
Sheil-Small, T., (author)
Cambridge : Cambridge University Press, 2002
1 online resource (xix, 428 pages)
englisch
9780521400688
9780521102766
9780511543074
Cambridge studies in advanced mathematics ; 75
Full Text
LEADER 02455nam a22003378i 4500
001 CR9780511543074
003 UkCbUP
008 090505s2002||||enk o ||1 0|eng|d
020 |a 9780511543074 
020 |a 9780521400688 
020 |a 9780521102766 
035 |a (Sirsi) a791713 
041 |a eng 
082 0 0 |a 512.9/42  |2 21 
100 1 |a Sheil-Small, T.,  |e author 
245 1 0 |a Complex polynomials  |h [E-Book] /  |c T. Sheil-Small. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2002  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xix, 428 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a Cambridge studies in advanced mathematics ;  |v 75 
500 |a englisch 
505 0 |a 1. The algebra of polynomials -- 2. The degree principle and the fundamental theorem of algebra -- 3. The Jacobian problem -- 4. Analytic and harmonic functions in the unit disc -- 5. Circular regions and Grace's theorem -- 6. The Ilieff-Sendov conjecture -- 7. Self-inversive polynomials -- 8. Duality and an extension of Grace's theorem to rational functions -- 9. Real polynomials -- 10. Level curves -- 11. Miscellaneous topics. 
520 |a This book studies the geometric theory of polynomials and rational functions in the plane. Any theory in the plane should make full use of the complex numbers and thus the early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology and analysis. In fact, throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems, bearing in mind that such problems indicate the current limitations of our knowledge and present challenges for the future. However, theories also lead to solutions of some problems and several such solutions are given including a comprehensive account of the geometric convolution theory. This is an ideal reference for graduate students and researchers working in this area. 
650 0 |a Polynomials. 
650 0 |a Functions of complex variables. 
856 4 0 |u https://doi.org/10.1017/CBO9780511543074  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(791713.1)  |w AUTO  |c 1  |i 791713-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE