A first course in the numerical analysis of differential equations [E-Book] / Arieh Iserles.
Iserles, A., (author)
Second edition.
Cambridge : Cambridge University Press, 2009
1 online resource (xviii, 459 pages)
Cambridge texts in applied mathematics ; 44
Full Text
Table of Contents:
  • Preface to the first edition; Preface to the second edition; Flowchart of contents; Part I. Ordinary differential equations: 1. Euler's method and beyond; 2. Multistep methods; 3. Runge-Kutta methods; 4. Stiff equations; 5. Geometric numerical integration; 6. Error control; 7. Nonlinear algebraic systems; Part II. The Poisson equation: 8. Finite difference schemes; 9. The finite element method; 10. Spectral methods; 11. Gaussian elimination for sparse linear equations; 12. Classical iterative methods for sparse linear equations; 13. Multigrid techniques; 14. Conjugate gradients; 15. Fast Poisson solvers; Part III. Partial differential equations of evolution: 16. The diffusion equation; 17. Hyperbolic equations; Appendix. Bluffer's guide to useful mathematics: A.1. Linear algebra; A.2. Analysis; Bibliography; Index.