Algebraic and analytic geometry [E-Book] / Amnon Neeman.
Neeman, Amnon, (author)
Cambridge : Cambridge University Press, 2007
1 online resource (xii, 420 pages)
englisch
9780511800443
9780521709835
London Mathematical Society lecture note series ; 345
Full Text
LEADER 02330nam a22003258i 4500
001 CR9780511800443
003 UkCbUP
008 101021s2007||||enk o ||1 0|eng|d
020 |a 9780511800443 
020 |a 9780521709835 
035 |a (Sirsi) a793249 
041 |a eng 
082 0 4 |a 516.3  |2 22 
100 1 |a Neeman, Amnon,  |e author 
245 1 0 |a Algebraic and analytic geometry  |h [E-Book] /  |c Amnon Neeman. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2007  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xii, 420 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a London Mathematical Society lecture note series ;  |v 345 
500 |a englisch 
505 0 |a Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index. 
520 |a This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it connects algebra and analysis; the average student will probably be more familiar and more comfortable with the analytic component. The book therefore focuses on Serre's GAGA theorem, which perhaps best encapsulates the link between algebra and analysis. GAGA provides the unifying theme of the book: we develop enough of the modern machinery of algebraic geometry to be able to give an essentially complete proof, at a level accessible to undergraduates throughout. The book is based on a course which the author has taught, twice, at the Australian National University. 
650 0 |a Geometry, Algebraic. 
650 0 |a Geometry, Analytic. 
856 4 0 |u https://doi.org/10.1017/CBO9780511800443  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(793249.1)  |w AUTO  |c 1  |i 793249-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE