Understanding machine learning : from theory to algorithms [E-Book] / Shai Shalev-Shwartz, The Hebrew University, Jerusalem, Shai Ben-David, University of Waterloo, Canada.
Shalev-Shwartz, Shai, (author)
Ben-David, Shai, (author)
Cambridge : Cambridge University Press, 2014
1 online resource (xvi, 397 pages)
englisch
9781107057135
9781107298019
Full Text
LEADER 03366nam a22003258i 4500
001 CR9781107298019
003 UkCbUP
008 130717s2014||||enk o ||1 0|eng|d
020 |a 9781107298019 
020 |a 9781107057135 
035 |a (Sirsi) a793713 
041 |a eng 
082 0 0 |a 006.3/1  |2 23 
100 1 |a Shalev-Shwartz, Shai,  |e author 
245 1 0 |a Understanding machine learning :  |b from theory to algorithms  |h [E-Book] /  |c Shai Shalev-Shwartz, The Hebrew University, Jerusalem, Shai Ben-David, University of Waterloo, Canada. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2014  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xvi, 397 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 8 |a Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra. 
520 |a Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering. 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
700 1 |a Ben-David, Shai,  |e author 
856 4 0 |u https://doi.org/10.1017/CBO9781107298019  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(793713.1)  |w AUTO  |c 1  |i 793713-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE