Animal and human calorimetry [E-Book] / J.A. McLean, G. Tobin.
McLean, J. A., (author)
Tobin, G., (author)
Cambridge : Cambridge University Press, 1987
1 online resource (xiii, 338 pages)
englisch
9780521309059
9780511663161
9780521048859
Full Text
Table of Contents:
  • List of principal symbols and abbreviations used
  • Preface
  • 1 Introduction
  • 2 Historical
  • 3 Calorific equivalents
  • 3.1 Bomb calorimetry
  • 3.1.1. Adiabatic bomb calorimetry
  • 3.1.2. Ballistic bomb calorimetry
  • 3.2 The oxidation of foodstuffs and excreta
  • 3.2.1. Carbohydrate
  • 3.2.2. Fat
  • 3.2.3. Protein
  • 3.2.4. Incomplete oxidation
  • 3.2.5. A shorter approach
  • 3.3 Review of published values
  • 3.3.1. Calorific factors
  • 3.3.2. Tables and equations for respiratory exchange measurements
  • 3.3.3. Calculation from carbon-nitrogen balance
  • 3.3.4. Metabolic water
  • 3.4 Summary and recommendations
  • 4 Indirect calorimeters
  • 4.1. Confinement systems
  • 4.1.1. The Rowett Research Institute confinement respiration chambers
  • a. Chambers and ventilation
  • b. Pressure control
  • c. Gas sampling, analysis and calculation
  • 4.1.2. Pressure control by volume adjustment
  • 4.1.3. Design theory
  • 4.2 Closed-circuit
  • 4.2.1. Small animal respirometers
  • a. Constant pressure systems
  • b. Constant volume systems
  • 4.2.2. Large animal respiration chambers
  • 4.2.3. Human respiration chambers
  • a. The Atwater and Benedict respiration chamber
  • 4.2.4. Spirometers
  • a. Types of spirometer
  • b. The use of a spirometer
  • c. Spirometers as oxygen reservoirs
  • d. Spirometers for large animals
  • e. Calibration and errors
  • 4.3 Total collection systems
  • 4.3.1. Rigid collecting chambers
  • 4.3.2. Bag systems
  • a. The Douglas bag
  • b. Other types of bag
  • 4.4 Open-circuit systems
  • 4.4.1. Portable systems (sample collection)
  • a. The Kofranyi-Michaelis (K-M) or Max Planck respirometer
  • b. The integrating motor pneumotachograph (IMP)
  • c. The Miser
  • d. The Oxylog
  • e. Tracheal cannulation techniques
  • 4.4.2. Ventilated flow-through systems
  • a. Open-circuit chambers
  • b. Ventilated hoods
  • c. Masks and mouthpieces
  • d. Ventilation and air-conditioning
  • e. Gas mixing
  • f. Measurement of flowrate
  • g. Methods of gas analysis
  • h. A portable flow-through system
  • the metabolic rate monitor
  • 4.5 Calculation methods
  • 4.5.1. Steady-state conditions
  • a. Oxygen consumption from oxygen analysis and carbon dioxide absorption
  • b. Oxygen consumption when all respiratory gases are analysed
  • c. Carbon dioxide and methane production
  • d. Respiratory quotient
  • e. Metabolic rate
  • 4.5.2. Dynamic conditions
  • 4.5.3. Practical aspects
  • 4.6 Other indirect systems
  • 4.6.1. Labelled carbon
  • 4.6.2. Doubly labelled water
  • 4.6.3. Measurements that correlate with heat production
  • 4.7 Summary
  • 5 Direct calorimeters
  • 5.1.1. The psychrometric chart
  • 5.2 Types of direct calorimeters
  • 5.2.1. Isothermal calorimeters
  • 5.2.2. Heat-sink calorimeters
  • 5.2.3. Convection calorimeters
  • 5.2.4. Differential calorimeters
  • 5.3 Gradient-layer calorimeters
  • 5.3.1. The Hannah Research Institute large animal calorimeter
  • a. The animal chamber
  • b. Ventilation
  • c. Air sampling
  • d. Water cooling system
  • e. Instrumentation
  • f. Initial calibration
  • g. Routine calibration and operation
  • h. Performance
  • 5.3.2. Gradient layers
  • a. Basic sensitivity
  • b. Spacing of measuring points
  • c. Speed of response
  • d. Resistance-thermometer layers
  • e. Thermocouple layers
  • f. Construction
  • 5.3.3. Animal chambers
  • a. Air leaks
  • b. Heat leaks
  • c. Illumination
  • d. Animal-restraining structures
  • 5.3.4. Ventilation
  • a. Ventilation rate
  • b. Platemeters
  • c. Thermopiles
  • d. Fans, heaters, ducting, etc.
  • 5.3.5. Temperature control
  • 5.4 Heat-sink calorimeters
  • 5.4.1. The Dunn calorimeter
  • a. The structure and ventilation
  • b. Water circulation
  • c. Estimation of heat losses
  • d. Calibration
  • 5.4.2. Other heat-sink calorimeters
  • 5.4.3. Suit calorimeters
  • 5.5 Convection calorimeters
  • 5.6 Differential calorimeters
  • 5.7 Evaporative heat loss
  • 5.8 Other energy exchanges
  • 5.9 Body heat storage
  • 5.9.1. Mean skin temperature
  • 5.9.2. Mean body temperature
  • 6 Instrumentation
  • 6.1 Instruments for basic measurements
  • 6.1.1. Voltage
  • 6.1.2. Temperature
  • 6.1.3. Humidity
  • a. Wet-and dry-bulb psychrometers
  • b. Dewcells
  • c. Peltier cooled mirrors
  • 6.1.4. Pressure
  • 6.2 Equipment for gas analysis
  • 6.2.1. Chemical analysis
  • a. Haldane analysis
  • b. Scholander gas analyser
  • 6.2.2. Physical analysers
  • a. Oxygen electrodes or polarographic cells
  • b. Paramagnetic oxygen analysers
  • c. Infra-red gas analysers
  • d. Mass spectrometers
  • e. Thermal conductivity
  • f. Fuel cells
  • g. Gas chromatography
  • 6.3 Instruments for the measurement of volume and flow
  • 6.3.1. Measurement of volume
  • a. Wet gasmeters
  • b. Dry gasmeters
  • c. Wright respirometer
  • 6.3.2. Volume flowrate
  • a. Turbine flowmeters
  • b. Pneumotachograph
  • c. Orifice flowmeters
  • 6.3.3. Mass flowrate
  • a. Critical flowmeters
  • b. Thermal flowmeters
  • 6.3.4. Variable-area flowmeters
  • 6.4 Recorders and data loggers
  • 6.5 Other instrumentation
  • 6.5.1. Food supply
  • 6.5.2. Collection of excreta
  • 6.5.3. Safety aspects
  • 7 Calibrations and standards
  • 7.1 Standardisation of basic measurements
  • 7.2 Calibration of gas analysers
  • 7.2.1. Introduction
  • 7.2.2. Sample conditioning
  • 7.2.3. Calibration requirements
  • 7.2.4. Standard gases
  • a. Zero gas
  • b. Dry fresh air
  • 7.2.5. Calibration-gas mixtures
  • a. Static methods
  • b. Dynamic methods
  • c. Checking the composition of calibration mixtures
  • 7.2.6. Linearity checks of oxygen analysers
  • a. By means of gas mixtures
  • b. By variation of pressure in the analytical cell
  • 7.2.7. Calibration of pressure-sensitive oxygen analysers by the variable-pressure method
  • 7.2.8. Calibration of carbon dioxide and methane analysers
  • a. Linearity checks
  • b. Routine calibration
  • 7.3 Calibration of flowmeters
  • 7.3.1. Soap-bubble flowmeters
  • 7.3.2. Wet gasmeters
  • 7.3.3. Critical-orifice flowmeters
  • 7.3.4. Spirometers and gasometers
  • 7.3.5. Gravimetric calibration
  • 7.3.6. Dilution method
  • 7.3.7. Calibration of flowmeters that measure pulsatile flow
  • 7.4 Whole system checks
  • 7.4.1. Recovery of heat
  • 7.4.2. Recovery of carbondioxide
  • 7.4.3. Recovery of oxygen
  • a. Nitrogen injection
  • b. Steel-wool burners
  • 7.4.4. Combined methods
  • a. Alcohol burners
  • b. Agreement between direct and indirect calorimetry
  • 7.4.5. Calibration: the golden rules
  • 7.5 Some additional problems encountered
  • 8 Some complete open-circuit systems
  • 8.1 Using a simple voltage recorder
  • 8.2 Switched-range recorder and twin-channel oxygen analyser
  • 8.3 Systems using divided reservoirs
  • 8.4 The Leeds indirect flow-through calorimeters
  • 8.4.1. The semi-automated human calorimeter
  • 8.4.2. The semi-automated, multichamber small animal calorimeter
  • 8.4.3. The computer-controlled multichamber small animal calorimeter
  • Appendices
  • Al Calculation of calorific factors from elemental composition
  • A2 Solution of equations for heat production, and carbohydrate and fat metabolised
  • A3 Report of the Brouwer Committee (1965)
  • A4 Analysis of heatflow through gradient layers
  • 1. The basic insulating layer
  • 2. The metal foil covering the insulating layer
  • 3. Reduced temperature gradient due to lateral heatflow in the thermocouple tape
  • 4. Direct heatflow through the metal bridges
  • 5. Heatflow at the edges of platemeters
  • A5 Some physical properties of materials used in constructing calorimeters
  • References
  • Index