Formal approaches in categorization [E-Book] / Emmanuel M. Pothos, Andy J. Wills, Editors.
Pothos, Emmanuel M., (editor)
Wills, Andy J., (editor)
Cambridge : Cambridge University Press, 2011
1 online resource (xii, 336 pages)
Full Text
Table of Contents:
  • Machine generated contents note: 1. Introduction Emmanuel M. Pothos and Andy J. Wills; 2. The generalized context model: an exemplar model of classification Robert M. Nosofsky; 3. Prototype models of categorization: basic formulation, predictions, and limitations John Paul Minda and J. David Smith; 4. COVIS F. Gregory Ashby, Erick J. Paul and W. Todd Maddox; 5. Semantics without categorization Timothy T. Rogers and James L. McClelland; 6. Models of attentional learning John K. Kruschke; 7. An elemental model of associative learning and memory Evan Livesey and Ian McLaren; 8. Nonparametric Bayesian models of categorization Thomas L. Griffiths, Adam N. Sanborn, Kevin R. Canini, Daniel J. Navarro and Joshua B. Tenenbaum; 9. The simplicity model of unsupervised categorization Emmanuel M. Pothos, Nick Chater and Peter Hines; 10. Adaptive clustering models of categorization John V. McDonnell and Todd M. Gureckis; 11. COBWEB models of categorization and probabilistic concept formation Wayne Iba and Pat Langley; 12. The knowledge and resonance (KRES) model of category learning Harlan D. Harris and Bob Rehder; 13. The contribution (and drawbacks) of models to the study of concepts Gregory L. Murphy; 14. Formal models of categorization: insights from cognitive neuroscience Lukas Strnad, Stefano Anzellotti and Alfonso Caramazza; 15. Comments on models and categorization theories: the razor's edge Douglas Medin.