Riemannian geometry : a modern introduction [E-Book] / Isaac Chavel.
Chavel, Isaac, (author)
Second edition.
Cambridge : Cambridge University Press, 2006
1 online resource (xvi, 471 pages)
englisch
9780521853682
9780521619547
9780511616822
Cambridge studies in advanced mathematics ; 98
Full Text
LEADER 02469nam a22003378i 4500
001 CR9780511616822
003 UkCbUP
008 090915s2006||||enk o ||1 0|eng|d
020 |a 9780511616822 
020 |a 9780521853682 
020 |a 9780521619547 
035 |a (Sirsi) a796139 
041 |a eng 
082 0 0 |a 516.3/73  |2 22 
100 1 |a Chavel, Isaac,  |e author 
245 1 0 |a Riemannian geometry :  |b a modern introduction  |h [E-Book] /  |c Isaac Chavel. 
250 |a Second edition. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2006  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xvi, 471 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a Cambridge studies in advanced mathematics ;  |v 98 
500 |a englisch 
505 0 0 |g I.  |t Riemannian manifolds --  |g II.  |t Riemannian curvature --  |g III.  |t Riemannian volume --  |g IV.  |t Riemannian coverings --  |g V.  |t Surfaces --  |g VI.  |t Isoperimetric inequalities (constant curvature) --  |g VII.  |t The kinematic density --  |g VIII.  |t Isoperimetric inequalities (variable curvature) --  |g IX.  |t Comparison and finiteness theorems. 
520 |a This book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. 
650 0 |a Geometry, Riemannian. 
856 4 0 |u https://doi.org/10.1017/CBO9780511616822  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(796139.1)  |w AUTO  |c 1  |i 796139-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE