Kernel methods and machine learning [E-Book] / S.Y. Kung, Princeton University.
Kung, S. Y., (author)
Cambridge : Cambridge University Press, 2014
1 online resource (xxiv, 591 pages)
englisch
9781107024960
9781139176224
Full Text
LEADER 03499nam a22003258i 4500
001 CR9781139176224
003 UkCbUP
008 111019s2014||||enk o ||1 0|eng|d
020 |a 9781139176224 
020 |a 9781107024960 
035 |a (Sirsi) a796410 
041 |a eng 
082 0 0 |a 006.3/10151252  |2 23 
100 1 |a Kung, S. Y.,  |e author 
245 1 0 |a Kernel methods and machine learning  |h [E-Book] /  |c S.Y. Kung, Princeton University. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2014  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xxiv, 591 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 8 |a Machine generated contents note: Part I. Machine Learning and Kernel Vector Spaces: 1. Fundamentals of machine learning; 2. Kernel-induced vector spaces; Part II. Dimension-Reduction: Feature Selection and PCA/KPCA: 3. Feature selection; 4. PCA and Kernel-PCA; Part III. Unsupervised Learning Models for Cluster Analysis: 5. Unsupervised learning for cluster discovery; 6. Kernel methods for cluster discovery; Part IV. Kernel Ridge Regressors and Variants: 7. Kernel-based regression and regularization analysis; 8. Linear regression and discriminant analysis for supervised classification; 9. Kernel ridge regression for supervised classification; Part V. Support Vector Machines and Variants: 10. Support vector machines; 11. Support vector learning models for outlier detection; 12. Ridge-SVM learning models; Part VI. Kernel Methods for Green Machine Learning Technologies: 13. Efficient kernel methods for learning and classifcation; Part VII. Kernel Methods and Statistical Estimation Theory: 14. Statistical regression analysis and errors-in-variables models; 15: Kernel methods for estimation, prediction, and system identification; Part VIII. Appendices: Appendix A. Validation and test of learning models; Appendix B. kNN, PNN, and Bayes classifiers; References; Index. 
520 |a Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors. 
650 0 |a Support vector machines. 
650 0 |a Machine learning. 
650 0 |a Kernel functions. 
856 4 0 |u https://doi.org/10.1017/CBO9781139176224  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(796410.1)  |w AUTO  |c 1  |i 796410-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE