High-dimensional statistics : a non-asymptotic viewpoint [E-Book] / Martin J. Wainwright.
Wainwright, Martin, (author)
Cambridge : Cambridge University Press, 2019
1 online resource (xvii, 552 pages)
englisch
9781108498029
9781108627771
Cambridge series in statistical and probabilistic mathematics ; 48
Full Text
LEADER 02217nam a22003138i 4500
001 CR9781108627771
003 UkCbUP
008 180522s2019||||enk o ||1 0|eng|d
020 |a 9781108627771 
020 |a 9781108498029 
035 |a (Sirsi) a797005 
041 |a eng 
082 0 0 |a 519.5  |2 23 
100 1 |a Wainwright, Martin,  |e author 
245 1 0 |a High-dimensional statistics :  |b a non-asymptotic viewpoint  |h [E-Book] /  |c Martin J. Wainwright. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2019  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xvii, 552 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a Cambridge series in statistical and probabilistic mathematics ;  |v 48 
500 |a englisch 
520 |a Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data. 
650 0 |a Mathematical statistics  |v Textbooks. 
650 0 |a Big data. 
856 4 0 |u https://www.cambridge.org/core/product/identifier/9781108627771/type/BOOK  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(797005.1)  |w AUTO  |c 1  |i 797005-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE