Theory of continuous Fokker-Planck systems [E-Book] / edited by Frank Moss and P.V.E. McClintock.
Moss, Frank, (editor)
McClintock, P. V. E., (editor)
Cambridge : Cambridge University Press, 1989
1 online resource (xvi, 353 pages)
Noise in nonlinear dynamical systems ; volume 1
Full Text
LEADER 02210nam a22003258i 4500
001 CR9780511897818
003 UkCbUP
008 101123s1989||||enk o ||1 0|eng|d
020 |a 9780511897818 
020 |a 9780521352284 
020 |a 9780521118507 
035 |a (Sirsi) a797945 
041 |a eng 
082 0 0 |a 530.1592  |2 23 
245 0 0 |a Theory of continuous Fokker-Planck systems  |h [E-Book] /  |c edited by Frank Moss and P.V.E. McClintock. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 1989  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xvi, 353 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 |a Noise in nonlinear dynamical systems ;  |v volume 1 
500 |a englisch 
520 |a Nature is inherently noisy and nonlinear. It is noisy in the sense that all macroscopic systems are subject to the fluctuations of their environments and also to internal fluctuations. It is nonlinear in the sense that the restoring force on a system displaced from equilibrium does not usually vary linearly with the size of the displacement. To calculate the properties of stochastic (noisy) nonlinear systems is in general extremely difficult, although considerable progress has been made in the past. The three volumes that make up Noise in Nonlinear Dynamical Systems comprise a collection of specially written authoritative reviews on all aspects of the subject, representative of all the major practitioners in the field. The first volume deals with the basic theory of stochastic nonlinear systems. It includes an historical overview of the origins of the field, chapters covering some developed theoretical techniques for the study of coloured noise, and the first English-language translation of the landmark 1933 paper by Pontriagin, Andronov and Vitt. 
650 0 |a Fokker-Planck equation. 
700 1 |a Moss, Frank,  |e editor 
700 1 |a McClintock, P. V. E.,  |e editor 
856 4 0 |u  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(797945.1)  |w AUTO  |c 1  |i 797945-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE