Evolution of phase transitions : a continuum theory [E-Book] / Rohan Abeyaratne, James K. Knowles.
Abeyaratne, Rohan, (author)
Knowles, James K., (author)
Cambridge : Cambridge University Press, 2006
1 online resource (xv, 242 pages)
englisch
9780521380515
9780521661478
9780511547133
Full Text
LEADER 02950nam a22003498i 4500
001 CR9780511547133
003 UkCbUP
008 090508s2006||||enk o ||1 0|eng|d
020 |a 9780511547133 
020 |a 9780521661478 
020 |a 9780521380515 
035 |a (Sirsi) a798571 
041 |a eng 
082 0 0 |a 530.4/74  |2 22 
100 1 |a Abeyaratne, Rohan,  |e author 
245 1 0 |a Evolution of phase transitions :  |b a continuum theory  |h [E-Book] /  |c Rohan Abeyaratne, James K. Knowles. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2006  |e (CUP)  |f CUP20200108 
300 |a 1 online resource (xv, 242 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a englisch 
505 0 0 |g 1.  |t Introduction --  |g 2.  |t Two-well potentials, governing equations and energetics --  |g 3.  |t Equilibrium phase mixtures and quasistatic processes --  |g 4.  |t Impact-induced transitions in two-phase elastic materials --  |g 5.  |t Multiple-well free energy potentials --  |g 6.  |t The continuum theory of driving force --  |g 7.  |t Thermoelastic materials --  |g 8.  |t Kinetics and nucleation --  |g 9.  |t Models for two-phase thermoelastic materials in one dimension --  |g 10.  |t Quasistatic hysteresis in two-phase thermoelastic tensile bars --  |g 11.  |t Dynamics of phase transitions in uniaxially strained thermoelastic solids --  |g 12.  |t Statics : geometric compatibility --  |g 13.  |t Dynamics : impact-induced transition in a CuAINi single crystal --  |g 14.  |t Quasistatics : kinetics of martensitic twinning. 
520 |a This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory. 
650 0 |a Phase transformations (Statistical physics) 
650 0 |a Continuum mechanics. 
650 0 |a Kinetic theory of matter. 
700 1 |a Knowles, James K.,  |e author 
856 4 0 |u https://doi.org/10.1017/CBO9780511547133  |z Volltext 
932 |a CambridgeCore (Order 30059) 
596 |a 1 
949 |a XX(798571.1)  |w AUTO  |c 1  |i 798571-1001  |l ELECTRONIC  |m ZB  |r N  |s Y  |t E-BOOK  |u 8/1/2020  |x UNKNOWN  |z UNKNOWN  |1 ONLINE