Practical collider physics [E-Book] / Andy Buckley, Christopher White, Martin White.
Practical Collider Physics provides a self-contained summary of all of the necessary theoretical, experimental and statistical knowledge required to analyse hadron collider data, focussing on the skills and techniques that are rarely covered in standard textbooks. It covers topics including parton d...
Saved in:
Full text |
|
Personal Name(s): | Buckley, Andy, author |
White, Christopher D., author / White, Martin John, author | |
Imprint: |
Bristol:
IOP Publishing,
2021
|
Physical Description: |
1 online resource (various pagings) |
Note: |
englisch |
ISBN: |
9780750324441 9780750324434 |
DOI: |
10.1088/978-0-7503-2444-1 |
Subject (LOC): |
- part I. Theory and methods for hadron colliders. 1. Introduction
- 1.1. Types of collider
- 1.2. Relativistic kinematics
- 1.3. Events, cross-sections and luminosity
- 1.4. Differential cross-sections
- 1.5. Particle detectors
- 2. Quantum field theory for hadron colliders
- 2.1. QED as a gauge theory
- 2.2. Quarks and colour
- 2.3. Lie groups
- 2.4. QCD as a gauge theory
- 2.5. Spontaneous symmetry breaking and the Higgs mechanism
- 2.6. The Standard Model of particle physics
- 2.7. Cross-sections and scattering amplitudes
- 2.8. Feynman diagrams and rules
- 2.9. Squared amplitudes
- 2.10. Phase-space integrals and the cross-section
- 2.11. Renormalisation in QED
- 2.12. Dimensional regularisation
- 2.13. Running couplings and masses
- 2.14. Renormalisation in QCD
- 2.15. Parton distributions
- 2.16. The DGLAP equations
- 2.17. Global fits of parton distributions
- 3. From theory to experiment
- 3.1. Fixed-order perturbation theory
- 3.2. Resummation
- 3.3. Parton showers
- 3.4. Hadronisation
- 3.5. The underlying event
- 3.6. Jet algorithms
- 3.7. Matching parton showers with matrix elements
- 3.8. Matching NLO matrix elements
- 4. Beyond the Standard Model
- 4.1. Theoretical challenges to the Standard Model
- 4.2. Experimental challenges to the Standard Model
- 4.3. Searching for beyond the SM physics
- 4.4. Possible new-physics theories
- 5. Statistics for collider physics
- 5.1. What is probability?
- 5.2. Correlations
- 5.3. Statistical estimators
- 5.4. Parameter inference
- 5.5. Bayesian inference
- 5.6. Frequentist inference
- 5.7. Sampling
- 5.8. Hypothesis testing
- 5.9. Multivariate methods and machine learning
- part II. Experimental physics at hadron colliders. 6. Detecting and reconstructing particles at hadron colliders
- 6.1. Basic approach to particle detection and particle identification
- 6.2. Detector technologies in ATLAS and CMS
- 6.3. Triggers
- 6.4. Particle reconstruction
- 6.5. Rogue signals
- 7. Computing and data processing
- 7.1. Computing logistics
- 7.2. Event generation
- 7.3. Detector simulation and digitization
- 7.4. Reconstruction
- 7.5. Analysis-data processing, visualisation, and onwards
- 8. Data analysis basics
- 8.1. Data-taking
- 8.2. Object definition and selection
- 8.3. Event selection
- 8.4. Observables
- 8.5. Performance optimisation
- 8.6. Estimating backgrounds and uncertainties
- 9. Resonance searches
- 9.1. Types of resonance
- 9.2. Anatomy of a diphoton resonance search
- 9.3. Jet resonance searches
- 10. Semi-invisible particle searches
- 10.1. General approach for semi-invisible particle searches
- 10.2. Developing accurate background models
- 10.3. Comparing the observed LHC data with background models
- 10.4. Long-lived particle searches
- 11. High-precision measurements
- 11.1. Fiducial definitions, volumes and cross-sections
- 11.2. Complex object reconstruction
- 11.3. Detector corrections and unfolding
- 12. Analysis preservation and reinterpretation
- 12.1. Why reinterpretation is difficult
- 12.2. Fundamentals of reinterpretation: global statistical fits
- 12.3. Reinterpreting particle searches
- 12.4. Reinterpreting fiducial measurements
- 12.5. Analysis preservation and open data
- 13. Outlook
- 13.1. The future of the LHC
- 13.2. Beyond the LHC
- part III. Appendix. Appendix A. Useful relativistic formulae.