A multidisciplinary approach to quantum field theory. Volume 1. An introduction [E-Book] / Michael Ogilvie.
This book covers quantum field theory at an introductory level appropriate for graduate students in physics. The first volume aims to allow students to begin their research in fields using quantum field theory, such as particle physics, nuclear physics, cosmology and astrophysics and condensed matte...
Saved in:
Full text |
|
Personal Name(s): | Ogilvie, Michael, author |
Imprint: |
Bristol :
IOP Publishing,
2022
|
Physical Description: |
1 online resource (various pagings) |
Note: |
englisch |
ISBN: |
9780750332279 9780750332262 |
DOI: |
10.1088/978-0-7503-3227-9 |
Subject (LOC): |
- 1. Introduction to quantum field theory
- 1.1. Natural units
- 1.2. The simple harmonic oscillator in classical mechanics
- 1.3. The harmonic oscillator in quantum mechanics
- 1.4. Photons
- 1.5. Paths to quantum field theory
- 2. Quantum mechanics and path integrals
- 2.1. Classical mechanics and fields
- 2.2. Quantum mechanics
- 2.3. The Feynman path integral for one degree of freedom
- 3. Classical fields
- 3.1. Wave equations in classical mechanics and quantum mechanics
- 3.2. Special relativity
- 3.3. The Lagrangian formalism for fields
- 3.4. Continuous symmetries in classical field theory
- 3.5. The Hamiltonian formalism
- 3.6. Causality
- 4. Free quantum fields
- 4.1. The Feynman path integral for field theories
- 4.2. Free scalar fields
- 4.3. Another approach to the functional integral
- 4.4. Interpretation of Z[0] for free fields
- 4.5. Vacuum energy examples
- 4.6. Fock space
- 4.7. Relativistic invariance and Fock space
- 4.8. Free quantum fields in Fock space
- 4.9. The canonical commutation relations and causality
- 4.10. Equivalence to the functional integral formalism
- 4.11. Continuous symmetries in quantum field theories
- 5. Interacting quantum fields
- 5.1. Perturbation theory and Feynman diagrams
- 5.2. Feynman diagrams in position space
- 5.3. Feynman diagrams in momentum space
- 5.4. Scattering theory
- 5.5. A toy model of nucleons and pions
- 5.6. The CPT theorem
- 5.7. Cross-sections and decay rates
- 6. Renormalization
- 6.1. Mass renormalization
- 6.2. Coupling constant renormalization
- 6.3. Field renormalization
- 6.4. Renormalization : a systematic process
- 6.5. Renormalizability
- 6.6. Matrix elements and the LSZ reduction formula
- 7. Symmetries and symmetry breaking
- 7.1. Internal symmetries
- 7.2. Spontaneous symmetry breaking and perturbation theory
- 7.3. Broken continuous symmetries and Goldstone bosons
- 7.4. Renormalization of models with spontaneous symmetry breaking
- 8. Fermions
- 8.1. Introduction to the Dirac equation
- 8.2. Representations of the Lorentz group
- 8.3. The Dirac equation
- 8.4. Solutions of the Dirac equation
- 8.5. The free Dirac field
- 8.6. Dirac bilinears
- 8.7. Chiral symmetry and helicity
- 8.8. Charge conjugation and coupling to the electromagnetic field
- 8.9. Functional integration for fermions
- 8.10. Feynman rules and scattering for a Yukawa field theory
- 8.11. Interpreting the boson and fermion functional determinants
- 8.12. The linear sigma model of mesons and nucleons.