Tearing mode dynamics in tokamak plasmas [E-Book] / Richard Fitzpatrick.
The development of humankind's ultimate energy source, nuclear fusion, has proceeded slowly but surely over the course of the last 60 years. This comprehensive book aims to outline a realistic, comprehensive, self-consistent, analytic theory of tearing mode dynamics in tokamak plasmas. It discu...
Saved in:
Full text |
|
Personal Name(s): | Fitzpatrick, Richard, author |
Imprint: |
Bristol:
IOP Publishing,
2023
|
Physical Description: |
1 online resource (various pagings) |
Note: |
englisch |
ISBN: |
9780750353670 9780750353663 |
DOI: |
10.1088/978-0-7503-5367-0 |
Series Title: |
/* Depending on the record driver, $field may either be an array with
"name" and "number" keys or a flat string containing only the series
name. We should account for both cases to maximize compatibility. */?>
IOP series in plasma physics
|
Subject (LOC): |
- 1. Introduction
- 1.1. Introduction
- 1.2. Thermonuclear fusion
- 1.3. Nuclear fusion reactions
- 1.4. The Lawson criterion
- 1.5. Fusion plasma parameters
- 1.6. Particle balance
- 1.7. Energy balance
- 1.8. Linear pinches
- 1.9. Toroidal pinches
- 1.10. Tokamaks
- 1.11. Tearing modes
- 1.12. Tearing mode rotation
- 1.13. Error field penetration
- 1.14. Neoclassical tearing modes
- 1.15. Tearing modes in toroidal plasmas
- 2. Plasma fluid theory
- 2.1. Introduction
- 2.2. Kinetic theory
- 2.3. Fluid theory
- 2.4. Fundamental quantities
- 2.5. Fluid closure schemes
- 2.6. The classical closure scheme
- 2.7. Trapped and passing particles
- 2.8. The neoclassical closure scheme
- 2.9. Drift and transport orderings
- 2.10. Toroidal plasma equilibrium
- 2.11. Lowest-order flows
- 2.12. The flux-surface average operator
- 2.13. Chew-Goldberger-Low forms
- 2.14. Parallel flows
- 2.15. Useful results
- 2.16. Friction force densities
- 2.17. Parallel viscous force densities
- 2.18. The determination of ion flows
- 2.19. The determination of electron flows
- 2.20. Parallel current density
- 2.21. Neoclassical transport
- 2.22. The perpendicular closure scheme
- 2.23. The parallel closure scheme
- 2.24. The derivation of the neoclassical fluid equations
- 2.25. The normalization of the neoclassical fluid equations
- 2.26. Discussion
- 3. Cylindrical tearing-mode theory
- 3.1. Introduction
- 3.2. Cylindrical tokamak equilibrium
- 3.3. Magnetic field and current density perturbations
- 3.4. Density and temperature perturbations
- 3.5. Fluid continuity
- 3.6. Velocity perturbation
- 3.7. The cylindrical tearing-mode equation
- 3.8. The solution in the presence of a perfectly conducting wall
- 3.9. The solution in the presence of a resistive wall
- 3.10. Resistive-wall physics
- 3.11. Resistive-layer physics
- 3.12. The solution in the presence of an external magnetic field coil
- 3.13. Electromagnetic torques
- 3.14. The plasma angular equations of motion
- 3.15. The solution of the plasma angular equations of motion
- 3.16. Modification of the rotational frequency
- 3.17. The tearing-mode evolution equations
- 4. Reduced resonant response model
- 4.1. Introduction
- 4.2. The drift-MHD fluid equations
- 4.3. The normalization scheme
- 4.4. The reduction process
- 4.5. The reduced drift-MHD model
- 5. Linear resonant response model
- 5.1. Introduction
- 5.2. The reduced drift-MHD model
- 5.3. Plasma equilibrium
- 5.4. Linearized reduced drift-MHD equations
- 5.5. Resonant-layer equations
- 5.6. Asymptotic matching
- 5.7. Fourier transformation
- 5.8. The constant-[Psi] limit
- 5.9. Constant-[Psi] linear resonant response regimes
- 5.10. The nonconstant-[Psi] limit
- 5.11. Nonconstant-[Psi] linear resonant response regimes
- 5.12. Linear resonant response regimes
- 5.13. Response regimes in tokamak fusion reactors
- 5.14. The numerical solution of the resonant-layer equations
- 5.15. Plasma rotation
- 5.16. Magnetic reconnection
- 6. Linear tearing-mode stability
- 6.1. Introduction
- 6.2. The linear dispersion relation
- 6.3. The determination of linear growth rates
- 6.4. Linear growth-rate regimes
- 6.5. Resonant-layer thickness
- 6.6. The numerical solution of the resonant-layer equations
- 7. Error-field penetration in tokamak plasmas
- 7.1. Introduction
- 7.2. Asymptotic matching
- 7.3. The resonant-layer response
- 7.4. Torque balance
- 7.5. Error-field penetration
- 7.6. The numerical solution of the layer equations
- 8. The nonlinear resonant response model
- 8.1. Introduction
- 8.2. The reduced drift-MHD model
- 8.3. The rescaled reduced drift-MHD model
- 8.4. The ordering scheme
- 8.5. The lowest-order solution
- 8.6. The flux-surface average operator
- 8.7. Fluid velocities
- 8.8. The need for a higher-order solution
- 8.9. The higher-order solution
- 8.10. Asymptotic matching
- 8.11. The evaluation of the integrals
- 9. Nonlinear tearing-mode stability
- 9.1. Introduction
- 9.2. The Rutherford island-width evolution equation
- 9.3. The composite linear/nonlinear model
- 9.4. Saturated island width
- 9.5. The island rotation frequency
- 10. Rotation braking in tokamak plasmas
- 10.1. Introduction
- 10.2. Rotation braking by a thin conducting wall
- 10.3. Rotation braking by a thick conducting wall
- 10.4. An improved torque balance model
- 11. The nonlinear neoclassical resonant response model
- 11.1. Introduction
- 11.2. The neoclassical drift-magnetohydrodynamic equations
- 11.3. The reduced neoclasssical drift-MHD model
- 11.4. Magnetic field-line curvature
- 11.5. The rescaled reduced neoclassical drift-MHD model
- 11.6. The ordering scheme
- 11.7. The zeroth-order solution
- 11.8. The higher-order solution
- 11.9. Asymptotic matching
- 11.10. The evaluation of the integrals
- 12. Neoclassical tearing modes
- 12.1. Introduction
- 12.2. The isolated magnetic island chain
- 12.3. The island rotation frequency
- 12.4. The generalized Rutherford equation
- 12.5. Stabilization via rf-driven current
- 13. Mode locking in tokamak plasmas
- 13.1. Introduction
- 13.2. Asymptotic matching
- 13.3. The Rutherford island width evolution equation
- 13.4. Island phase evolution equations
- 13.5. The analytic solution of the phase evolution equations
- 13.6. A numerical solution of the phase evolution equations
- 13.7. Locked magnetic island chains
- 13.8. Island width evolution
- 14. Toroidal tearing modes
- 14.1. Introduction
- 14.2. Coordinate systems
- 14.3. Useful identities
- 14.4. The equilibrium magnetic field
- 14.5. The equilibrium plasma current density
- 14.6. The Grad-Shafranov equation
- 14.7. The perturbed magnetic field
- 14.8. The perturbed current density
- 14.9. Electromagnetic torques
- 14.10. Magnetic island chains
- 14.11. The inductance matrix
- 14.12. The calculation of the inductance matrix
- 14.13. The toroidal tearing-mode dispersion relation
- 14.14. An example tokamak discharge
- 14.15. Linear calculation
- 14.16. Nonlinear calculation
- 14.17. The effect of electromagnetic torques
- 14.18. Neoclassical tearing modes
- Appendix A. Neoclassical theory.