An introduction to the physics of nuclei and particles [E-Book] / Richard A. Dunlap.
This second edition of An Introduction to the Physics of Nuclei and Particles is intended as a textbook for a one semester third or fourth year undergraduate course and requires a basic background in quantum mechanics. The text covers the basic properties of nuclei and the models of nuclear structur...
Saved in:
Full text |
|
Personal Name(s): | Dunlap, R. A., author |
Edition: |
Second edition. |
Imprint: |
Bristol:
IOP Publishing,
2023
|
Physical Description: |
1 online resource (various pagings) |
Note: |
englisch |
ISBN: |
9780750360937 9780750360944 |
DOI: |
10.1088/978-0-7503-6094-4 |
Subject (LOC): |
- part I. Introduction. 1. Basic concepts
- 1.1. Introduction
- 1.2. Terminology and definitions
- 1.3. Units and dimensions
- 1.4. Sources of information
- 2. Subatomic particles and their interactions
- 2.1. Classification of subatomic particles
- 2.2. Classification and ranges of interactions
- 2.3. Conservation laws
- part II. Nuclear properties and models. 3. Nuclear composition and size
- 3.1. Composition of the nucleus
- 3.2. Rutherford scattering
- 3.3. Charge distribution of the nucleus
- 3.4. Mass distribution of the nucleus
- 4. Binding energy and the liquid drop model
- 4.1. Definition and properties of the nuclear binding energy
- 4.2. The liquid drop model
- 4.3. Beta stability
- 4.4. Nucleon separation energies
- 5. The shell model
- 5.1. Overview of atomic structure
- 5.2. Evidence for nuclear shell structure
- 5.3. The infinite square well potential
- 5.4. Other forms of the nuclear potential
- 5.5. Spin-orbit coupling
- 5.6. Nuclear energy levels
- 6. Properties of the nucleus
- 6.1. Ground state spin and parity
- 6.2. Excited nuclear states
- 6.3. Mirror nuclei
- 6.4. Electromagnetic moments of the nucleus
- 6.5. Electric quadrupole moments
- 6.6. Magnetic dipole moments
- 6.7. Other approaches to modeling nuclei
- part III. Nuclear decays and reactions. 7. General properties of decay processes
- 7.1. Decay rates and lifetimes
- 7.2. Quantum mechanical considerations
- 7.3. Radioactive dating
- 8. Alpha decay
- 8.1. Energetics of alpha decay
- 8.2. Theory of alpha decay
- 8.3. Angular momentum considerations
- 9. Beta decay
- 9.1. Energetics of beta decay
- 9.2. Fermi theory of beta decay
- 9.3. Fermi-Kurie plots
- 9.4. Allowed and forbidden transitions
- 9.5. Parity violation in beta decay
- 9.6. Double beta decay
- 10. Gamma decay
- 10.1. Energetics of gamma decay
- 10.2. Classical theory of radiative processes
- 10.3. Quantum mechanical description of gamma decay
- 10.4. Selection rules
- 10.5. Internal conversion
- 11. Nuclear reactions
- 11.1. General classification of reactions and conservation laws
- 11.2. Inelastic scattering
- 11.3. Nuclear reactions
- 11.4. Deuteron stripping reactions
- 11.5. Neutron reactions
- 11.6. Coulomb effects
- 12. Fission reactions
- 12.1. Basic properties of fission processes
- 12.2. Induced fission
- 12.3. Fission processes in uranium
- 12.4. Neutron cross sections for uranium
- 12.5. Critical mass for chain reactions
- 12.6. Moderators and reactor control
- 12.7. Reactor stability
- 12.8. Current fission reactor designs
- 12.9. Advanced fission reactor designs
- 13. Fusion reactions
- 13.1. Fusion processes
- 13.2. Fusion cross sections and reaction rates
- 13.3. Stellar fusion processes
- 13.4. Fusion reactors
- 13.5. Magnetic confinement reactors
- 13.6. Inertial confinement reactors
- part IV. Particle physics. 14. Particles and interactions
- 14.1. Classification of particles
- 14.2. Properties of leptons
- 14.3. Feynman diagrams
- 15. The standard model
- 15.1. Evidence for quarks
- 15.2. Composition of light hadrons
- 15.3. Composition of heavy hadrons
- 15.4. More about quarks
- 15.5. Color and gluons
- 16. Particle reactions and decays
- 16.1. Reactions and decays in the context of the quark model
- 16.2. W<< and Z0 bosons
- 16.3. Quark generation mixing
- 16.4. Conservation laws and vertex rules
- 16.5. Classification of interactions
- 16.6. Transition probabilities and Feynman diagrams
- 16.7. Meson production and fragmentation
- 16.8. CP violation in neutral meson decays
- 17. The Higgs boson
- 17.1. Yukawa theory and the mass of the weak boson
- 17.2. Spontaneous symmetry breaking and the Higgs field
- 17.3. The Higgs boson
- 17.4. Experimental observation of the Higgs boson
- 18. Proton decay
- 18.1. Grand unified theories
- 18.2. Proton decay
- 18.3. Cherenkov radiation and its detection
- 18.4. The Kamioka observatory
- 18.5. Experimental limits to proton decay
- 19. Neutrino oscillations and masses
- 19.1. Solar neutrinos
- 19.2. Neutrino flavor states
- 19.3. Real-time neutrino experiments
- 19.4. More solar neutrino results
- 19.5. Atmospheric neutrino studies
- 19.6. Reactor neutrino studies
- 19.7. Geoneutrino measurements
- 19.8. Neutrino oscillations and masses
- 19.9. Other approaches to measuring neutrino masses
- 19.10. Summary
- Appendix A. Physical constants and conversion factors
- Appendix B. Properties of nuclides
- Appendix C. An overview of particle accelerators
- Appendix D. Solutions to even numbered problems.