Piezoelectricity in classical and modern systems [E-Book] / Morten Willatzen.
The present book provides a detailed account of the fundamental physics, group symmetry, and concepts from elasticity to establish the general properties of mechanical and electromagnetic wave propagation in crystals. The interaction of mechanical fields and electromagnetic waves in the so-called qu...
Saved in:
Full text |
|
Personal Name(s): | Willatzen, Morten, author |
Imprint: |
Bristol :
IOP Publishing,
[2024]
|
Physical Description: |
1 online resource |
Note: |
englisch |
ISBN: |
9780750355575 |
DOI: |
10.1088/978-0-7503-5557-5 |
Subject (LOC): |
- part I. Strain and stress in solids. 1. Definition of strain and stress
- 1.1. Strain
- 1.2. Stress
- 1.3. Thermodynamics of deformation
- 1.4. Free energy of a solid crystal
- 2. Transformation properties of strain and stress
- 2.1. Orthogonal transformations
- 2.2. Transformation law for the stiffness matrix
- 2.3. Stiffness tensor of cubic crystal in rotated coordinates
- 2.4. equations-of-motion in rotated coordinates
- 3. Wave propagation in solids
- 3.1. Compressional wave propagation along the [110] direction in a cubic crystal
- 3.2. Hexagonal crystals
- 3.3. Unbounded isotropic media
- 3.4. Christoffel equation
- 3.5. Surface waves
- part II. Dynamic deformation. 4. Simple oscillator systems
- 4.1. Case 1: underdamping
- 4.2. Case 2: overdamping
- 4.3. Case 3: critical damping
- 4.4. Forced oscillations
- 5. Transverse vibrations of strings
- 5.1. Wave equation of strings
- 5.2. Forced vibration of a semi-infinite string
- 5.3. Normal modes of the fixed-fixed string
- 6. Vibrations of bars
- 6.1. Simple boundary conditions
- 6.2. Transverse vibrations of bars
- 6.3. Torsional waves in a bar
- 7. Vibrations of membranes
- 7.1. Theory of vibrating membranes
- 7.2. Rectangular membrane with fixed edges
- 8. Cylindrical rod vibrations
- 8.1. Wave equations of cylindrical rods
- 8.2. Longitudinal vibrations
- 8.3. Elasticity equations
- 8.4. Torsional waves
- 8.5. Flexural waves
- 8.6. General three-dimensional dispersion equation for infinite cylindrical rods
- 8.7. Program for computing three-dimensional dispersion curves of infinite cylindrical rods
- 8.8. Circumferential waves in a hollow elastic cylinder
- part III. Piezoelectricity and applications. 9. A piezoelectric toy model
- 9.1. Non-piezoelectric system
- 9.2. Piezoelectric system
- 10. Piezoelectricity in solid crystals
- 10.1. Piezoelectricity in cubic (diamond and zincblende) structures
- 10.2. Piezoelectricity in hexagonal structures
- 11. Group theory, transformation properties, and application to material properties
- 11.1. Group tables and material parameters
- 11.2. Stiffness matrices
- 11.3. Piezoelectric matrices
- 11.4. Permittivity matrices
- 11.5. Transformation matrices for the symmetry group generators
- 11.6. Transformation properties of the stiffness tensor using point-group symmetry
- 11.7. Transformation properties of the piezoelectric and permittivity tensors
- 11.8. Transformation of the permittivity tensor
- 11.9. Coupled electromagnetic and mechanical fields in piezoelectric materials
- 11.10. The quasistatic approximation
- 11.11. Solving the coupled field equations for a strain wave in a cubic material
- 12. Piezoelectric reciprocal systems coupled to fluids
- 12.1. Wave motion in fluids
- 12.2. The equation of continuity
- 12.3. The Euler equation
- 12.4. Wave propagation in fluids
- 12.5. Piezoelectric constitutive equations
- 12.6. Equation-of-motion in the 1D solid case
- 12.7. Mono-frequency case
- 12.8. A one-dimensional model of a classical piezoelectric transmitter
- 12.9. A one-dimensional model of a classical piezoelectric receiver
- 12.10. General time-dependent excitation of a reciprocal piezoelectric transducer system
- 13. Three-dimensional axisymmetric piezoelectric vibrations
- 13.1. Piezoelectric cylindrical rod
- C mm 6v(6 ) crystal symmetry
- 13.2. Effective one-dimensional spatial model
- 13.3. Full two-dimensional numerical implementation
- 13.4. Numerical results using the effective one-dimensional model
- 14. Flexoelectricity and electrostriction
- 14.1. Flexoelectricity and symmetry properties of hexagonal crystals
- 14.2. Converse flexoelectricity
- 14.3. Electrostriction and symmetry properties of hexagonal crystals
- 14.4. Flexoelectricity and piezoelectricity in graphene
- 14.5. Set of dynamic equations for a two-dimensional membrane
- 14.6. Case study 1
- 14.7. Case study 2
- 15. Atomistic approach to piezoelectric properties
- 15.1. Modern theory of polarization
- 15.2. Berry phase
- 15.3. The three-dimensional system
- 15.4. Berry phase: example 1
- 15.5. Berry phase of a sequence of N states
- 15.6. Berry phase: example 2
- 15.7. Atomistic approach to strain and elasticity: valence force-field models
- 15.8. equation-of-motion and dynamical matrix
- 15.9. The dynamical matrix
- 15.10. CdS wurtzite case
- 15.11. Theory of the local electric field
- 15.12. Electric field from a polarized medium
- 15.13. Born-Huang theory
- 15.14. Piezoelectric vibrations at optical frequencies
- 16. Optical properties of piezoelectric materials
- 16.1. Optical absorption in a semiconductor
- 16.2. The k.p method
- 16.3. Piezoelectric potential
- 16.4. Electron Hamiltonian
- 16.5. Hole Hamiltonian
- 16.6. Zincblende
- 16.7. Wurtzite
- 16.8. Band structure of heterostructures
- 17. Sonoluminescence
- 17.1. Sonoluminescense due to bubble oscillations
- 17.2. Incompressible fluids
- 17.3. Derivation of the Rayleigh-Plesset equation
- 17.4. Momentum conservation
- 17.5. Boundary conditions
- 17.6. Adiabatic gases and perfect gas law
- 17.7. Derivation of Planck's black-body radiation law
- 17.8. The Planck formula
- 17.9. Stefan-Boltzmann law
- 17.10. Derivation of Wien's displacement law from Planck's black-body radiation law
- 17.11. Numerical solution of the Rayleigh-Plesset equation, i.e., bubble radius versus time for a given ultrasonic pulse
- Part IV. Appendices. Appendix A. Stiffness tables
- Appendix B. Piezoelectric constant tables
- Appendix C. Permittivity tables.