This title appears in the Scientific Report : 2013 

Two-Dimensional SIR Epidemics with Long Range Infection
Grassberger, Peter (Corresponding author)
Jülich Supercomputing Center; JSC
Journal of statistical physics, 153 (2013) 2, S. 289 - 311
New York, NY [u.a.] Springer Science + Business Media B.V. 2013
10.1007/s10955-013-0824-7
Journal Article
Computational Science and Mathematical Methods
Please use the identifier: http://dx.doi.org/10.1007/s10955-013-0824-7 in citations.
We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)∼|x|−σ−2 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2, and for the supercritical case with 0<σ<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2 we find generic power laws with σ-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ in the regime 0<σ<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.