This title appears in the Scientific Report : 2011 

Self-Assembled Nanometer-Scale Magnetic Networks on Surfaces: Fundamental Interactions and Functional Properties
Carbone, C.
Gardonio, S. / Moras, P. / Lounis, S. / Heide, M. / Bihlmayer, G. / Atodiresei, N. / Dederichs, P. H. / Blügel, S. / Vlaic, S. / Lehnert, A. / Ouazi, S. / Rusponi, S. / Brune, H. / Honolka, J. / Enders, A. / Kern, K. / Stepanow, S. / Krull, C. / Balashov, T. / Mugarza, A. / Gambardella, P.
Jülich-Aachen Research Alliance - Simulation Sciences; JARA-SIM
Quanten-Theorie der Materialien; PGI-1
Quanten-Theorie der Materialien; IAS-1
Theoretische Nanoelektronik; PGI-2
Advanced functional materials, 21 (2011) S. 1212 - 1228
Weinheim Wiley-VCH 2011
1212 - 1228
Journal Article
Grundlagen für zukünftige Informationstechnologien
Advanced Functional Materials 21
Please use the identifier: in citations.
Nanomagnets of controlled size, organized into regular patterns open new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Self-assembling processes on various types of substrates allow designing fine-structured architectures and tuning of their magnetic properties. Here, starting from a description of fundamental magnetic interactions at the nanoscale, we review recent experimental approaches to fabricate zero-, one-, and two-dimensional magnetic particle arrays with dimensions reduced to the atomic limit and unprecedented areal density. We describe systems composed of individual magnetic atoms, metal-organic networks, metal wires, and bimetallic particles, as well as strategies to control their magnetic moment, anisotropy, and temperature-dependent magnetic behavior. The investigation of self-assembled subnanometer magnetic particles leads to significant progress in the design of fundamental and functional aspects, mutual interactions among the magnetic units, and their coupling with the environment.