This title appears in the Scientific Report :
2012
Please use the identifier:
http://dx.doi.org/10.1016/j.neuroimage.2011.08.030 in citations.
Automatic identification of gray and white matter components in polarized light imaging
Automatic identification of gray and white matter components in polarized light imaging
Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The...
Saved in:
Personal Name(s): | Dammers, J. |
---|---|
Breuer, L. / Axer, M. / Kleiner, M. / Eiben, B. / Gräßel, D. / Dickscheid, T. / Zilles, K. / Amunts, K. / Shah, N.J. / Pietrzyk, U. | |
Contributing Institute: |
Strukturelle und funktionelle Organisation des Gehirns; INM-1 Physik der Medizinischen Bildgebung; INM-4 Molekulare Organisation des Gehirns; INM-2 |
Published in: | NeuroImage, 59 (2012) 2, S. 1338–1347 |
Imprint: |
Orlando, Fla.
Academic Press
2012
|
Physical Description: |
1338–1347 |
DOI: |
10.1016/j.neuroimage.2011.08.030 |
PubMed ID: |
21875673 |
Document Type: |
Journal Article |
Research Program: |
Theory, modelling and simulation Funktion und Dysfunktion des Nervensystems |
Series Title: |
NeuroImage
59 |
Subject (ZB): | |
Publikationsportal JuSER |
LEADER | 07219nam a2201105 a 4500 | ||
---|---|---|---|
001 | 16171 | ||
005 | 20210129210642.0 | ||
980 | |a VDB | ||
980 | |a ConvertedRecord | ||
980 | |a journal | ||
980 | |a I:(DE-Juel1)INM-1-20090406 | ||
980 | |a I:(DE-Juel1)INM-2-20090406 | ||
980 | |a I:(DE-Juel1)INM-4-20090406 | ||
980 | |a UNRESTRICTED | ||
700 | 1 | |0 P:(DE-Juel1)131637 |a Breuer, L. |b 1 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)VDB67318 |a Axer, M. |b 2 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)VDB100171 |a Kleiner, M. |b 3 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)VDB62239 |a Eiben, B. |b 4 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)131642 |a Gräßel, D. |b 5 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)165746 |a Dickscheid, T. |b 6 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)131714 |a Zilles, K. |b 7 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)131631 |a Amunts, K. |b 8 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)131794 |a Shah, N.J. |b 9 |u FZJ | |
700 | 1 | |0 P:(DE-Juel1)VDB2211 |a Pietrzyk, U. |b 10 |u FZJ | |
037 | |a PreJuSER-16171 | ||
856 | 7 | |u http://dx.doi.org/10.1016/j.neuroimage.2011.08.030 | |
970 | |a VDB:(DE-Juel1)129901 | ||
520 | |a Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging. | ||
650 | 2 | |2 MeSH |a Algorithms | |
650 | 2 | |2 MeSH |a Artificial Intelligence | |
650 | 2 | |2 MeSH |a Brain: cytology | |
650 | 2 | |2 MeSH |a Humans | |
650 | 2 | |2 MeSH |a Image Enhancement: methods | |
650 | 2 | |2 MeSH |a Image Interpretation, Computer-Assisted: methods | |
650 | 2 | |2 MeSH |a Lighting: methods | |
650 | 2 | |2 MeSH |a Microscopy, Polarization: methods | |
650 | 2 | |2 MeSH |a Nerve Fibers, Myelinated: ultrastructure | |
650 | 2 | |2 MeSH |a Neurons: cytology | |
650 | 2 | |2 MeSH |a Pattern Recognition, Automated: methods | |
650 | 2 | |2 MeSH |a Reproducibility of Results | |
650 | 2 | |2 MeSH |a Sensitivity and Specificity | |
915 | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed | ||
915 | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR | ||
915 | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index | ||
915 | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded | ||
915 | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection | ||
915 | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List | ||
915 | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS | ||
915 | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline | ||
915 | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database | ||
915 | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz | ||
915 | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences | ||
915 | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews | ||
914 | 1 | |y 2012 | |
500 | |a Record converted from VDB: 12.11.2012 | ||
773 | |0 PERI:(DE-600)1471418-8 |a 10.1016/j.neuroimage.2011.08.030 |g Vol. 59 |n 2 |p 1338–1347 |q 59 |t NeuroImage |v 59 |x 1053-8119 |y 2012 | ||
300 | |a 1338–1347 | ||
082 | |a 610 | ||
440 | 0 | |0 4545 |a NeuroImage |v 59 |x 1053-8119 |y 1338 - 1347 | |
588 | |a Dataset connected to Pubmed | ||
245 | |a Automatic identification of gray and white matter components in polarized light imaging | ||
024 | 7 | |2 pmid |a pmid:21875673 | |
024 | 7 | |2 DOI |a 10.1016/j.neuroimage.2011.08.030 | |
024 | 7 | |2 WOS |a WOS:000298210600054 | |
024 | 7 | |2 altmetric |a altmetric:396783 | |
260 | |a Orlando, Fla. |b Academic Press |c 2012 | ||
100 | 1 | |0 P:(DE-Juel1)VDB261 |a Dammers, J. |b 0 |u FZJ | |
041 | |a eng | ||
909 | C | O | |o oai:juser.fz-juelich.de:16171 |p VDB |
913 | 2 | |0 G:(DE-HGF)POF3-574 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Theory, modelling and simulation |x 0 | |
913 | 1 | |0 G:(DE-HGF)POF2-89574 |a DE-HGF |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm | |
536 | |a Theory, modelling and simulation |0 G:(DE-HGF)POF2-89574 |c POF2-89574 |f POF II T |x 1 | ||
536 | |a Funktion und Dysfunktion des Nervensystems |0 G:(DE-Juel1)FUEK409 |2 G:(DE-HGF) |x 0 |c FUEK409 | ||
336 | |2 BibTeX |a ARTICLE | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |2 DataCite |a Output Types/Journal article | ||
336 | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) | ||
336 | |2 DRIVER |a article | ||
336 | |2 ORCID |a JOURNAL_ARTICLE | ||
981 | |a I:(DE-Juel1)INM-2-20090406 | ||
920 | |k Strukturelle und funktionelle Organisation des Gehirns; INM-1 |0 I:(DE-Juel1)INM-1-20090406 |g INM |l Strukturelle und funktionelle Organisation des Gehirns |x 1 | ||
920 | |k Physik der Medizinischen Bildgebung; INM-4 |0 I:(DE-Juel1)INM-4-20090406 |g INM |l Physik der Medizinischen Bildgebung |x 2 | ||
981 | |a I:(DE-Juel1)INM-4-20090406 | ||
920 | |k Molekulare Organisation des Gehirns; INM-2 |0 I:(DE-Juel1)INM-2-20090406 |g INM |l Molekulare Organisation des Gehirns |x 0 | ||
991 | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 9 |u FZJ | ||
991 | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 8 |u FZJ | ||
991 | |a Zilles, Karl |0 P:(DE-Juel1)131714 |b 7 |u FZJ | ||
991 | |a Dickscheid, Timo |0 P:(DE-Juel1)165746 |b 6 |u FZJ | ||
990 | |a Dammers, J. |0 P:(DE-Juel1)VDB261 |b 0 |u FZJ | ||
991 | |a Grässel, David |0 P:(DE-Juel1)131642 |b 5 |u FZJ | ||
991 | |a Pietrzyk, U. |0 P:(DE-Juel1)VDB2211 |b 10 |u FZJ | ||
991 | |a Eiben, B. |0 P:(DE-Juel1)VDB62239 |b 4 |u FZJ | ||
991 | |a Kleiner, M. |0 P:(DE-Juel1)VDB100171 |b 3 |u FZJ | ||
991 | |a Axer, M. |0 P:(DE-Juel1)VDB67318 |b 2 |u FZJ | ||
991 | |a Breuer, Lukas |0 P:(DE-Juel1)131637 |b 1 |u FZJ |