Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf


QR Code
This title appears in the Scientific Report : 2012 

Automatic identification of gray and white matter components in polarized light imaging

Automatic identification of gray and white matter components in polarized light imaging

Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The...

More

Saved in:
Personal Name(s): Dammers, J.
Breuer, L. / Axer, M. / Kleiner, M. / Eiben, B. / Gräßel, D. / Dickscheid, T. / Zilles, K. / Amunts, K. / Shah, N.J. / Pietrzyk, U.
Contributing Institute: Strukturelle und funktionelle Organisation des Gehirns; INM-1
Physik der Medizinischen Bildgebung; INM-4
Molekulare Organisation des Gehirns; INM-2
Published in: NeuroImage, 59 (2012) 2, S. 1338–1347
Imprint: Orlando, Fla. Academic Press 2012
Physical Description: 1338–1347
DOI: 10.1016/j.neuroimage.2011.08.030
PubMed ID: 21875673
Document Type: Journal Article
Research Program: Theory, modelling and simulation
Funktion und Dysfunktion des Nervensystems
Series Title: NeuroImage 59
Subject (ZB):
Algorithms
Artificial Intelligence
Brain: cytology
Humans
Image Enhancement: methods
Image Interpretation, Computer-Assisted: methods
Lighting: methods
Microscopy, Polarization: methods
Nerve Fibers, Myelinated: ultrastructure
Neurons: cytology
Pattern Recognition, Automated: methods
Reproducibility of Results
Sensitivity and Specificity
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1016/j.neuroimage.2011.08.030 in citations.

  • Description
  • Staff View
LEADER 07219nam a2201105 a 4500
001 16171
005 20210129210642.0
980 |a VDB 
980 |a ConvertedRecord 
980 |a journal 
980 |a I:(DE-Juel1)INM-1-20090406 
980 |a I:(DE-Juel1)INM-2-20090406 
980 |a I:(DE-Juel1)INM-4-20090406 
980 |a UNRESTRICTED 
700 1 |0 P:(DE-Juel1)131637  |a Breuer, L.  |b 1  |u FZJ 
700 1 |0 P:(DE-Juel1)VDB67318  |a Axer, M.  |b 2  |u FZJ 
700 1 |0 P:(DE-Juel1)VDB100171  |a Kleiner, M.  |b 3  |u FZJ 
700 1 |0 P:(DE-Juel1)VDB62239  |a Eiben, B.  |b 4  |u FZJ 
700 1 |0 P:(DE-Juel1)131642  |a Gräßel, D.  |b 5  |u FZJ 
700 1 |0 P:(DE-Juel1)165746  |a Dickscheid, T.  |b 6  |u FZJ 
700 1 |0 P:(DE-Juel1)131714  |a Zilles, K.  |b 7  |u FZJ 
700 1 |0 P:(DE-Juel1)131631  |a Amunts, K.  |b 8  |u FZJ 
700 1 |0 P:(DE-Juel1)131794  |a Shah, N.J.  |b 9  |u FZJ 
700 1 |0 P:(DE-Juel1)VDB2211  |a Pietrzyk, U.  |b 10  |u FZJ 
037 |a PreJuSER-16171 
856 7 |u http://dx.doi.org/10.1016/j.neuroimage.2011.08.030 
970 |a VDB:(DE-Juel1)129901 
520 |a Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging. 
650 2 |2 MeSH  |a Algorithms 
650 2 |2 MeSH  |a Artificial Intelligence 
650 2 |2 MeSH  |a Brain: cytology 
650 2 |2 MeSH  |a Humans 
650 2 |2 MeSH  |a Image Enhancement: methods 
650 2 |2 MeSH  |a Image Interpretation, Computer-Assisted: methods 
650 2 |2 MeSH  |a Lighting: methods 
650 2 |2 MeSH  |a Microscopy, Polarization: methods 
650 2 |2 MeSH  |a Nerve Fibers, Myelinated: ultrastructure 
650 2 |2 MeSH  |a Neurons: cytology 
650 2 |2 MeSH  |a Pattern Recognition, Automated: methods 
650 2 |2 MeSH  |a Reproducibility of Results 
650 2 |2 MeSH  |a Sensitivity and Specificity 
915 |0 StatID:(DE-HGF)0010  |2 StatID  |a JCR/ISI refereed 
915 |0 StatID:(DE-HGF)0100  |2 StatID  |a JCR 
915 |0 StatID:(DE-HGF)0110  |2 StatID  |a WoS  |b Science Citation Index 
915 |0 StatID:(DE-HGF)0111  |2 StatID  |a WoS  |b Science Citation Index Expanded 
915 |0 StatID:(DE-HGF)0150  |2 StatID  |a DBCoverage  |b Web of Science Core Collection 
915 |0 StatID:(DE-HGF)0199  |2 StatID  |a DBCoverage  |b Thomson Reuters Master Journal List 
915 |0 StatID:(DE-HGF)0200  |2 StatID  |a DBCoverage  |b SCOPUS 
915 |0 StatID:(DE-HGF)0300  |2 StatID  |a DBCoverage  |b Medline 
915 |0 StatID:(DE-HGF)0310  |2 StatID  |a DBCoverage  |b NCBI Molecular Biology Database 
915 |0 StatID:(DE-HGF)0420  |2 StatID  |a Nationallizenz 
915 |0 StatID:(DE-HGF)1030  |2 StatID  |a DBCoverage  |b Current Contents - Life Sciences 
915 |0 StatID:(DE-HGF)1050  |2 StatID  |a DBCoverage  |b BIOSIS Previews 
914 1 |y 2012 
500 |a Record converted from VDB: 12.11.2012 
773 |0 PERI:(DE-600)1471418-8  |a 10.1016/j.neuroimage.2011.08.030  |g Vol. 59  |n 2  |p 1338–1347  |q 59  |t NeuroImage  |v 59  |x 1053-8119  |y 2012 
300 |a 1338–1347 
082 |a 610 
440 0 |0 4545  |a NeuroImage  |v 59  |x 1053-8119  |y 1338 - 1347 
588 |a Dataset connected to Pubmed 
245 |a Automatic identification of gray and white matter components in polarized light imaging 
024 7 |2 pmid  |a pmid:21875673 
024 7 |2 DOI  |a 10.1016/j.neuroimage.2011.08.030 
024 7 |2 WOS  |a WOS:000298210600054 
024 7 |2 altmetric  |a altmetric:396783 
260 |a Orlando, Fla.  |b Academic Press  |c 2012 
100 1 |0 P:(DE-Juel1)VDB261  |a Dammers, J.  |b 0  |u FZJ 
041 |a eng 
909 C O |o oai:juser.fz-juelich.de:16171  |p VDB 
913 2 |0 G:(DE-HGF)POF3-574  |1 G:(DE-HGF)POF3-570  |2 G:(DE-HGF)POF3-500  |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |v Theory, modelling and simulation  |x 0 
913 1 |0 G:(DE-HGF)POF2-89574  |a DE-HGF  |v Theory, modelling and simulation  |x 1  |4 G:(DE-HGF)POF  |1 G:(DE-HGF)POF3-890  |3 G:(DE-HGF)POF3  |2 G:(DE-HGF)POF3-800  |b Programmungebundene Forschung  |l ohne Programm 
536 |a Theory, modelling and simulation  |0 G:(DE-HGF)POF2-89574  |c POF2-89574  |f POF II T  |x 1 
536 |a Funktion und Dysfunktion des Nervensystems  |0 G:(DE-Juel1)FUEK409  |2 G:(DE-HGF)  |x 0  |c FUEK409 
336 |2 BibTeX  |a ARTICLE 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |2 DataCite  |a Output Types/Journal article 
336 |a Journal Article  |0 PUB:(DE-HGF)16  |2 PUB:(DE-HGF) 
336 |2 DRIVER  |a article 
336 |2 ORCID  |a JOURNAL_ARTICLE 
981 |a I:(DE-Juel1)INM-2-20090406 
920 |k Strukturelle und funktionelle Organisation des Gehirns; INM-1  |0 I:(DE-Juel1)INM-1-20090406  |g INM  |l Strukturelle und funktionelle Organisation des Gehirns  |x 1 
920 |k Physik der Medizinischen Bildgebung; INM-4  |0 I:(DE-Juel1)INM-4-20090406  |g INM  |l Physik der Medizinischen Bildgebung  |x 2 
981 |a I:(DE-Juel1)INM-4-20090406 
920 |k Molekulare Organisation des Gehirns; INM-2  |0 I:(DE-Juel1)INM-2-20090406  |g INM  |l Molekulare Organisation des Gehirns  |x 0 
991 |a Shah, N. J.  |0 P:(DE-Juel1)131794  |b 9  |u FZJ 
991 |a Amunts, Katrin  |0 P:(DE-Juel1)131631  |b 8  |u FZJ 
991 |a Zilles, Karl  |0 P:(DE-Juel1)131714  |b 7  |u FZJ 
991 |a Dickscheid, Timo  |0 P:(DE-Juel1)165746  |b 6  |u FZJ 
990 |a Dammers, J.  |0 P:(DE-Juel1)VDB261  |b 0  |u FZJ 
991 |a Grässel, David  |0 P:(DE-Juel1)131642  |b 5  |u FZJ 
991 |a Pietrzyk, U.  |0 P:(DE-Juel1)VDB2211  |b 10  |u FZJ 
991 |a Eiben, B.  |0 P:(DE-Juel1)VDB62239  |b 4  |u FZJ 
991 |a Kleiner, M.  |0 P:(DE-Juel1)VDB100171  |b 3  |u FZJ 
991 |a Axer, M.  |0 P:(DE-Juel1)VDB67318  |b 2  |u FZJ 
991 |a Breuer, Lukas  |0 P:(DE-Juel1)131637  |b 1  |u FZJ 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...