Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf


QR Code
This title appears in the Scientific Report : 2014 

Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions

Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions

The microstructure of blend films of conjugated polymer and fullerene, especially the degree of mixing and crystallization, impacts the performance of organic photovoltaic devices considerably. Mixing and crystallization affect device performance in different ways. These phenomena are not easy to sc...

More

Saved in:
Personal Name(s): Guilbert, Anne A. Y. (Corresponding Author)
Schmidt, Malte / Bruno, Annalisa / Yao, Jizhong / King, Simon / Tuladhar, Sachetan M. / Kirchartz, Thomas / Alonso, M. Isabel / Goñi, Alejandro R. / Stingelin, Natalie / Haque, Saif A. / Campoy-Quiles, Mariano / Nelson, Jenny
Contributing Institute: Photovoltaik; IEK-5
Published in: Advanced functional materials, 24 (2014) 44, S. 6972 - 6980
Imprint: Weinheim Wiley-VCH 2014
DOI: 10.1002/adfm.201401626
Document Type: Journal Article
Research Program: Thin Film Photovoltaics
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1002/adfm.201401626 in citations.

  • Description
  • Staff View

The microstructure of blend films of conjugated polymer and fullerene, especially the degree of mixing and crystallization, impacts the performance of organic photovoltaic devices considerably. Mixing and crystallization affect device performance in different ways. These phenomena are not easy to screen using traditional methods such as imaging. In this paper, the amorphous regiorandom poly(3-hexylthiophene) is blended with the potentially crystalline fullerene [6,6]-phenyl-C61-butyric acid methyl ester PCBM and the amorphous bis-adduct. First, the degree of mixing of polymer: fullerene blends is evaluated using UV–Vis absorption, steady-state and ultra-fast photoluminescence spectroscopy. The blue-shift of the polymer emission and absorption onset are used in combination with the saturation of the polymer emission decay time upon fullerene addition in order to infer the onset of aggregation of the blends. Second, the crystallinity of the fullerene is probed using variable angle spectroscopic ellipsometry (VASE), electroluminescence and photoluminescence spectroscopy. It is shown that the red-shift of charge transfer emission in the case of PCBM based blends cannot be explained solely by a variation of optical dielectric constant as probed by VASE. A combination of optical spectroscopy techniques, therefore, allows to probe the degree of mixing and can also distinguish between aggregation and crystallization of fullerenes.

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...