This title appears in the Scientific Report : 2015 

Atomic and electronic structures of an extremely fragile liquid
Kohara, Shinji (Corresponding Author)
Akola, Jaakko / Patrikeev, Leonid / Ropo, Matti / Ohara, Koji / Itou, Masayoshi / Fujiwara, Akihiko / Yahiro, Jumpei / Okada, Junpei T. / Ishikawa, Takehiko / Mizuno, Akitoshi / Masuno, Atsunobu / Watanabe, Yasuhiro / Usuki, Takeshi
Quanten-Theorie der Materialien; IAS-1
Quanten-Theorie der Materialien; PGI-1
Nature Communications, 5 (2014) S. 5892
London Nature Publishing Group 2014
Journal Article
Spin-based and quantum information
Please use the identifier: in citations.
Please use the identifier: in citations.
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ​ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ​ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ​ZrO2 is an extremely fragile liquid.