This title appears in the Scientific Report :
2015
Please use the identifier:
http://hdl.handle.net/2128/22847 in citations.
Please use the identifier: http://dx.doi.org/10.1039/C5SM01412C in citations.
Virial pressure in systems of spherical active Brownian particles
Virial pressure in systems of spherical active Brownian particles
The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure as force/area of confined systems can be equally expressed by bulk properties, which implies th...
Saved in:
Personal Name(s): | Winkler, Roland G. |
---|---|
Wysocki, Adam / Gompper, Gerhard (Corresponding author) | |
Contributing Institute: |
Theorie der Weichen Materie und Biophysik; IAS-2 Theorie der Weichen Materie und Biophysik; IFF-2 |
Published in: | Soft matter, 11 (2015) 33, S. 6680 - 6691 |
Imprint: |
London
Royal Soc. of Chemistry
2015
|
DOI: |
10.1039/C5SM01412C |
PubMed ID: |
26221908 |
Document Type: |
Journal Article |
Research Program: |
Physical Basis of Diseases |
Link: |
OpenAccess OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://dx.doi.org/10.1039/C5SM01412C in citations.
LEADER | 05381nam a2200733 a 4500 | ||
---|---|---|---|
001 | 279819 | ||
005 | 20210129221135.0 | ||
024 | 7 | |a 10.1039/C5SM01412C |2 doi | |
024 | 7 | |a 1744-683X |2 ISSN | |
024 | 7 | |a 1744-6848 |2 ISSN | |
024 | 7 | |a WOS:000359581400016 |2 WOS | |
024 | 7 | |a altmetric:4299726 |2 altmetric | |
024 | 7 | |a pmid:26221908 |2 pmid | |
024 | 7 | |a 2128/22847 |2 Handle | |
037 | |a FZJ-2015-07698 | ||
082 | |a 530 | ||
100 | 1 | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 0 |u fzj | |
245 | |a Virial pressure in systems of spherical active Brownian particles | ||
260 | |a London |c 2015 |b Royal Soc. of Chemistry | ||
520 | |a The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure as force/area of confined systems can be equally expressed by bulk properties, which implies the existence of a nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases, the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces, an activity-induced pressure (“swim pressure”), which can be expressed in terms of a product of the bare and a mean effective particle velocity, and the contribution by interparticle forces. We find that the pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls and the particle–wall interactions, which has no correspondence in systems with periodic boundary conditions. Our simulations of three-dimensional ABPs in systems with periodic boundary conditions reveal a pressure–concentration dependence that becomes increasingly nonmonotonic with increasing activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a rapid and steep change of the pressure. We present and discuss the pressure for various activities and analyse the contributions of the individual pressure components. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Wysocki, Adam |0 P:(DE-Juel1)131045 |b 1 |u fzj | |
700 | 1 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 |e Corresponding author |u fzj | |
773 | |a 10.1039/C5SM01412C |g Vol. 11, no. 33, p. 6680 - 6691 |0 PERI:(DE-600)2191476-X |n 33 |p 6680 - 6691 |t Soft matter |v 11 |y 2015 |x 1744-6848 | ||
856 | 4 | |y OpenAccess |u http://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf | |
856 | 4 | |y OpenAccess |x pdfa |u http://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf?subformat=pdfa | |
909 | C | O | |o oai:juser.fz-juelich.de:279819 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)131039 | |
910 | 1 | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131045 | |
910 | 1 | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130665 | |
913 | 1 | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
914 | 1 | |y 2015 | |
915 | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOFT MATTER : 2014 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID | ||
915 | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List | ||
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)IAS-2-20090406 | ||
980 | |a I:(DE-Juel1)VDB782 | ||
980 | 1 | |a FullTexts | |
536 | |a Physical Basis of Diseases |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1450267706_16037 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)VDB782 | ||
920 | |k Theorie der Weichen Materie und Biophysik; IAS-2 |0 I:(DE-Juel1)IAS-2-20090406 |l Theorie der Weichen Materie und Biophysik |x 0 | ||
920 | |k Theorie der Weichen Materie und Biophysik; IFF-2 |0 I:(DE-Juel1)VDB782 |l Theorie der Weichen Materie und Biophysik |x 1 | ||
990 | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 0 |u fzj | ||
991 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 |e Corresponding author |u fzj | ||
991 | |a Wysocki, Adam |0 P:(DE-Juel1)131045 |b 1 |u fzj |