Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf


QR Code
This title appears in the Scientific Report : 2010 

Suspension Plasma Spraying: Process Characteristics and Applications

Suspension Plasma Spraying: Process Characteristics and Applications

Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features li...

More

Saved in:
Personal Name(s): Vaßen, R.
Kaßner, H. / Mauer, G. / Stöver, D.
Contributing Institute: Werkstoffsynthese und Herstellungsverfahren; IEF-1
Published in: Journal of thermal spray technology, 19 (2010)
Imprint: Boston, Mass. Springer 2010
DOI: 10.1007/s11666-009-9451-x
Document Type: Journal Article
Research Program: Rationelle Energieumwandlung
Series Title: Journal of Thermal Spray Technology 19
Subject (ZB):
J
photovoltaic
solid oxide fuel cells
suspension plasma spraying
thermal barrier coatings
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1007/s11666-009-9451-x in citations.

  • Description
  • Staff View

Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented.

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...