Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2018 

Multi-scale account of the network structure of macaque visual cortex

Multi-scale account of the network structure of macaque visual cortex

Cortical network structure has been extensively characterized at the level of local circuits and in terms of long-range connectivity, but seldom in a manner that integrates both of these scales. Furthermore, while the connectivity of cortex is known to be related to its architecture, this knowledge...

More

Saved in:
Personal Name(s): Schmidt, Maximilian (Corresponding author)
Bakker, Rembrandt / Hilgetag, Claus C. / Diesmann, Markus (Corresponding author) / van Albada, Sacha J.
Contributing Institute: Computational and Systems Neuroscience; INM-6
JARA - HPC; JARA-HPC
Jara-Institut Brain structure-function relationships; INM-10
Theoretical Neuroscience; IAS-6
Published in: Brain structure & function, 223 (2018) 3, S. 1409–1435
Imprint: Berlin Springer 2018
PubMed ID: 29143946
DOI: 10.1007/s00429-017-1554-4
Document Type: Journal Article
Research Program: Human Brain Project Specific Grant Agreement 1
Human Brain Project Specific Grant Agreement 2
Brain-inspired multiscale computation in neuromorphic hybrid systems
Supercomputing and Modelling for the Human Brain
Theory, modelling and simulation
Brain-Scale Simulations
The Human Brain Project
Link: OpenAccess
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1007/s00429-017-1554-4 in citations.
Please use the identifier: http://hdl.handle.net/2128/19335 in citations.

  • Description
  • Staff View
LEADER 07925nam a2201033 a 4500
001 840051
005 20220930130136.0
024 7 |a 10.1007/s00429-017-1554-4  |2 doi 
024 7 |a 0340-2061  |2 ISSN 
024 7 |a 1432-0568  |2 ISSN 
024 7 |a 1863-2653  |2 ISSN 
024 7 |a 1863-2661  |2 ISSN 
024 7 |a 2128/19335  |2 Handle 
024 7 |a pmid:29143946  |2 pmid 
024 7 |a WOS:000428419500022  |2 WOS 
024 7 |a altmetric:29050339  |2 altmetric 
037 |a FZJ-2017-07615 
041 |a English 
082 |a 610 
100 1 |a Schmidt, Maximilian  |0 P:(DE-Juel1)145897  |b 0  |e Corresponding author 
245 |a Multi-scale account of the network structure of macaque visual cortex 
260 |a Berlin  |c 2018  |b Springer 
520 |a Cortical network structure has been extensively characterized at the level of local circuits and in terms of long-range connectivity, but seldom in a manner that integrates both of these scales. Furthermore, while the connectivity of cortex is known to be related to its architecture, this knowledge has not been used to derive a comprehensive cortical connectivity map. In this study, we integrate data on cortical architecture and axonal tracing data into a consistent multi-scale framework of the structure of one hemisphere of macaque vision-related cortex. The connectivity model predicts the connection probability between any two neurons based on their types and locations within areas and layers. Our analysis reveals regularities of cortical structure. We confirm that cortical thickness decays with cell density. A gradual reduction in neuron density together with the relative constancy of the volume density of synapses across cortical areas yields denser connectivity in visual areas more remote from sensory inputs and of lower structural differentiation. Further, we find a systematic relation between laminar patterns on source and target sides of cortical projections, extending previous findings from combined anterograde and retrograde tracing experiments. Going beyond the classical schemes, we statistically assign synapses to target neurons based on anatomical reconstructions, which suggests that layer 4 neurons receive substantial feedback input. Our derived connectivity exhibits a community structure that corresponds more closely with known functional groupings than previous connectivity maps and identifies layer-specific directional differences in cortico-cortical pathways. The resulting network can form the basis for studies relating structure to neural dynamics in mammalian cortex at multiple scales. 
588 |a Dataset connected to CrossRef 
700 1 |a Bakker, Rembrandt  |0 P:(DE-Juel1)145578  |b 1 
700 1 |a Hilgetag, Claus C.  |0 0000-0003-2129-8910  |b 2 
700 1 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 3  |e Corresponding author 
700 1 |a van Albada, Sacha J.  |0 P:(DE-Juel1)138512  |b 4 
773 |a 10.1007/s00429-017-1554-4  |0 PERI:(DE-600)2303775-1  |n 3  |p 1409–1435  |t Brain structure & function  |v 223  |y 2018  |x 1863-2661 
856 4 |u http://juser.fz-juelich.de/record/840051/files/Schmidt2018_Article_Multi-scaleAccountOfTheNetwork.pdf  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/840051/files/Schmidt2018_Article_Multi-scaleAccountOfTheNetwork.gif?subformat=icon  |x icon  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/840051/files/Schmidt2018_Article_Multi-scaleAccountOfTheNetwork.jpg?subformat=icon-1440  |x icon-1440  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/840051/files/Schmidt2018_Article_Multi-scaleAccountOfTheNetwork.jpg?subformat=icon-180  |x icon-180  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/840051/files/Schmidt2018_Article_Multi-scaleAccountOfTheNetwork.jpg?subformat=icon-640  |x icon-640  |y OpenAccess 
909 C O |o oai:juser.fz-juelich.de:840051  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p ec_fundedresources  |p openCost  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)145897 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)145578 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)144174 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 4  |6 P:(DE-Juel1)138512 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-574  |2 G:(DE-HGF)POF3-500  |v Theory, modelling and simulation  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2018 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a DBCoverage  |0 StatID:(DE-HGF)1030  |2 StatID  |b Current Contents - Life Sciences 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a DBCoverage  |0 StatID:(DE-HGF)0600  |2 StatID  |b Ebsco Academic Search 
915 |a DBCoverage  |0 StatID:(DE-HGF)1040  |2 StatID  |b Zoological Record 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b BRAIN STRUCT FUNCT : 2015 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a WoS  |0 StatID:(DE-HGF)0110  |2 StatID  |b Science Citation Index 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a Peer Review  |0 StatID:(DE-HGF)0030  |2 StatID  |b ASC 
915 |a IF >= 5  |0 StatID:(DE-HGF)9905  |2 StatID  |b BRAIN STRUCT FUNCT : 2015 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a DBCoverage  |0 StatID:(DE-HGF)1050  |2 StatID  |b BIOSIS Previews 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Thomson Reuters Master Journal List 
980 |a journal 
980 |a VDB 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a I:(DE-82)080012_20140620 
980 |a APC 
980 |a UNRESTRICTED 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Human Brain Project Specific Grant Agreement 1  |0 G:(EU-Grant)720270  |c 720270  |f H2020-Adhoc-2014-20  |x 4 
536 |a Human Brain Project Specific Grant Agreement 2  |0 G:(EU-Grant)785907  |c 785907  |f H2020-SGA-FETFLAG-HBP-2017  |x 3 
536 |a Brain-inspired multiscale computation in neuromorphic hybrid systems  |0 G:(EU-Grant)269921  |c 269921  |f FP7-ICT-2009-6  |x 2 
536 |a Supercomputing and Modelling for the Human Brain  |0 G:(DE-Juel1)HGF-SMHB-2013-2017  |c HGF-SMHB-2013-2017  |f SMHB  |x 1 
536 |a Theory, modelling and simulation  |0 G:(DE-HGF)POF3-574  |c POF3-574  |f POF III  |x 0 
536 |a Brain-Scale Simulations  |0 G:(DE-Juel1)jinb33_20121101  |c jinb33_20121101  |f Brain-Scale Simulations  |x 6 
536 |a The Human Brain Project  |0 G:(EU-Grant)604102  |c 604102  |f FP7-ICT-2013-FET-F  |x 5 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1552641335_21952  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
920 |k JARA - HPC; JARA-HPC  |0 I:(DE-82)080012_20140620  |l JARA - HPC  |x 3 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 2 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 1 
990 |a Schmidt, Maximilian  |0 P:(DE-Juel1)145897  |b 0  |e Corresponding author 
991 |a van Albada, Sacha  |0 P:(DE-Juel1)138512  |b 4 
991 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 3  |e Corresponding author 
991 |a Hilgetag, Claus C.  |0 0000-0003-2129-8910  |b 2 
991 |a Bakker, Rembrandt  |0 P:(DE-Juel1)145578  |b 1 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...