Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2018 

Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model

Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model

The digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time sc...

More

Saved in:
Personal Name(s): van Albada, Sacha (Corresponding author)
Rowley, Andrew G. / Senk, Johanna / Hopkins, Michael / Schmidt, Maximilian / Stokes, Alan B. / Lester, David R. / Diesmann, Markus / Furber, Steve B.
Contributing Institute: Jara-Institut Brain structure-function relationships; INM-10
Theoretical Neuroscience; IAS-6
Computational and Systems Neuroscience; INM-6
Published in: Frontiers in neuroscience, 12 (2018) S. 291
Imprint: Lausanne Frontiers Research Foundation 2018
PubMed ID: 29875620
DOI: 10.3389/fnins.2018.00291
Document Type: Journal Article
Research Program: Brain-inspired multiscale computation in neuromorphic hybrid systems
The Human Brain Project
Human Brain Project Specific Grant Agreement 1
Theory, modelling and simulation
Link: OpenAccess
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://hdl.handle.net/2128/18862 in citations.
Please use the identifier: http://dx.doi.org/10.3389/fnins.2018.00291 in citations.

  • Description
  • Staff View
LEADER 07918nam a2201009 a 4500
001 845675
005 20220930130148.0
024 7 |a 10.3389/fnins.2018.00291  |2 doi 
024 7 |a 1662-453X  |2 ISSN 
024 7 |a 1662-4548  |2 ISSN 
024 7 |a 2128/18862  |2 Handle 
024 7 |a pmid:29875620  |2 pmid 
024 7 |a WOS:000432839000001  |2 WOS 
024 7 |a altmetric:42394590  |2 altmetric 
037 |a FZJ-2018-02887 
082 |a 610 
100 1 |a van Albada, Sacha  |0 P:(DE-Juel1)138512  |b 0  |e Corresponding author 
245 |a Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model 
260 |a Lausanne  |c 2018  |b Frontiers Research Foundation 
520 |a The digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time scales of the dynamics can be neglected. By slowing down the simulation, shorter integration time steps and hence faster time scales, which are often biologically relevant, can be incorporated. We here describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker. Since about half the synapses onto the neurons arise within the microcircuit, larger cortical circuits have only moderately more synapses per neuron. Therefore, the full-scale microcircuit paves the way for simulating cortical circuits of arbitrary size. With approximately 80, 000 neurons and 0.3 billion synapses, this model is the largest simulated on SpiNNaker to date. The scale-up is enabled by recent developments in the SpiNNaker software stack that allow simulations to be spread across multiple boards. Comparison with simulations using the NEST software on a high-performance cluster shows that both simulators can reach a similar accuracy, despite the fixed-point arithmetic of SpiNNaker, demonstrating the usability of SpiNNaker for computational neuroscience applications with biological time scales and large network size. The runtime and power consumption are also assessed for both simulators on the example of the cortical microcircuit model. To obtain an accuracy similar to that of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown factor of around 20 compared to real time. The runtime for NEST saturates around 3 times real time using hybrid parallelization with MPI and multi-threading. However, achieving this runtime comes at the cost of increased power and energy consumption. The lowest total energy consumption for NEST is reached at around 144 parallel threads and 4.6 times slowdown. At this setting, NEST and SpiNNaker have a comparable energy consumption per synaptic event. Our results widen the application domain of SpiNNaker and help guide its development, showing that further optimizations such as synapse-centric network representation are necessary to enable real-time simulation of large biological neural networks. 
588 |a Dataset connected to CrossRef 
700 1 |a Rowley, Andrew G.  |0 P:(DE-HGF)0  |b 1 
700 1 |a Senk, Johanna  |0 P:(DE-Juel1)162130  |b 2 
700 1 |a Hopkins, Michael  |0 P:(DE-HGF)0  |b 3 
700 1 |a Schmidt, Maximilian  |0 P:(DE-Juel1)145897  |b 4 
700 1 |a Stokes, Alan B.  |0 P:(DE-HGF)0  |b 5 
700 1 |a Lester, David R.  |0 P:(DE-HGF)0  |b 6 
700 1 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 7 
700 1 |a Furber, Steve B.  |0 P:(DE-HGF)0  |b 8 
773 |a 10.3389/fnins.2018.00291  |g Vol. 12, p. 291  |0 PERI:(DE-600)2411902-7  |p 291  |t Frontiers in neuroscience  |v 12  |y 2018  |x 1662-453X 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.pdf 
856 4 |y OpenAccess  |x icon  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.gif?subformat=icon 
856 4 |y OpenAccess  |x icon-1440  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.jpg?subformat=icon-1440 
856 4 |y OpenAccess  |x icon-180  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.jpg?subformat=icon-180 
856 4 |y OpenAccess  |x icon-640  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.jpg?subformat=icon-640 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/845675/files/fnins-12-00291.pdf?subformat=pdfa 
909 C O |o oai:juser.fz-juelich.de:845675  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p ec_fundedresources  |p openCost  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)138512 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)162130 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 7  |6 P:(DE-Juel1)144174 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-574  |2 G:(DE-HGF)POF3-500  |v Theory, modelling and simulation  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2018 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a DBCoverage  |0 StatID:(DE-HGF)1050  |2 StatID  |b BIOSIS Previews 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b FRONT NEUROSCI-SWITZ : 2015 
915 |a DBCoverage  |0 StatID:(DE-HGF)0501  |2 StatID  |b DOAJ Seal 
915 |a DBCoverage  |0 StatID:(DE-HGF)0500  |2 StatID  |b DOAJ 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a IF < 5  |0 StatID:(DE-HGF)9900  |2 StatID 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Thomson Reuters Master Journal List 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a APC 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Brain-inspired multiscale computation in neuromorphic hybrid systems  |0 G:(EU-Grant)269921  |c 269921  |f FP7-ICT-2009-6  |x 3 
536 |a The Human Brain Project  |0 G:(EU-Grant)604102  |c 604102  |f FP7-ICT-2013-FET-F  |x 2 
536 |a Human Brain Project Specific Grant Agreement 1  |0 G:(EU-Grant)720270  |c 720270  |f H2020-Adhoc-2014-20  |x 1 
536 |a Theory, modelling and simulation  |0 G:(DE-HGF)POF3-574  |c POF3-574  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1528694723_23107  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |l yes 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 2 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 1 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
991 |a Furber, Steve B.  |0 P:(DE-HGF)0  |b 8 
991 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 7 
991 |a Lester, David R.  |0 P:(DE-HGF)0  |b 6 
990 |a van Albada, Sacha  |0 P:(DE-Juel1)138512  |b 0  |e Corresponding author 
991 |a Stokes, Alan B.  |0 P:(DE-HGF)0  |b 5 
991 |a Schmidt, Maximilian  |0 P:(DE-Juel1)145897  |b 4 
991 |a Hopkins, Michael  |0 P:(DE-HGF)0  |b 3 
991 |a Senk, Johanna  |0 P:(DE-Juel1)162130  |b 2 
991 |a Rowley, Andrew G.  |0 P:(DE-HGF)0  |b 1 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...