This title appears in the Scientific Report :
2018
Please use the identifier:
http://dx.doi.org/10.3389/fncom.2018.00044 in citations.
Please use the identifier: http://hdl.handle.net/2128/19324 in citations.
Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models
Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models
During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of...
Saved in:
Personal Name(s): | Maksimov, Andrei (Corresponding author) |
---|---|
Diesmann, Markus / van Albada, Sacha (Corresponding author) | |
Contributing Institute: |
Computational and Systems Neuroscience; INM-6 Theoretical Neuroscience; IAS-6 Jara-Institut Brain structure-function relationships; INM-10 |
Published in: | Frontiers in computational neuroscience, 12 (2018) S. 44 |
Imprint: |
Lausanne
Frontiers Research Foundation
2018
|
DOI: |
10.3389/fncom.2018.00044 |
PubMed ID: |
30042668 |
Document Type: |
Journal Article |
Research Program: |
Supercomputing and Modelling for the Human Brain The Human Brain Project Human Brain Project Specific Grant Agreement 1 Brain-inspired multiscale computation in neuromorphic hybrid systems Theory, modelling and simulation |
Link: |
Get full text OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/19324 in citations.
LEADER | 07018nam a2200877 a 4500 | ||
---|---|---|---|
001 | 848195 | ||
005 | 20220930130151.0 | ||
024 | 7 | |a 10.3389/fncom.2018.00044 |2 doi | |
024 | 7 | |a 2128/19324 |2 Handle | |
024 | 7 | |a pmid:30042668 |2 pmid | |
024 | 7 | |a WOS:000438275900001 |2 WOS | |
024 | 7 | |a altmetric:42693001 |2 altmetric | |
037 | |a FZJ-2018-03461 | ||
082 | |a 610 | ||
100 | 1 | |a Maksimov, Andrei |0 P:(DE-HGF)0 |b 0 |e Corresponding author | |
245 | |a Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models | ||
260 | |a Lausanne |c 2018 |b Frontiers Research Foundation | ||
520 | |a During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of excitatory and inhibitory neuronal inputs; and stability, maintenance of activity at a steady level. Slice preparations exhibiting Up states demonstrate that balanced activity can be maintained by small local circuits. While computational models of cortical circuits have included different combinations of excitability, balance, and stability, they have done so without a systematic quantitative comparison with experimental data. Our study provides quantitative criteria for this purpose, by analyzing in-vitro and in-vivo neuronal activity and characterizing the dynamics on the neuronal and population levels. The criteria are defined with a tolerance that allows for differences between experiments, yet are sufficient to capture commonalities between persistently depolarized cortical network states and to help validate computational models of cortex. As test cases for the derived set of criteria, we analyze three widely used models of cortical circuits and find that each model possesses some of the experimentally observed features, but none satisfies all criteria simultaneously, showing that the criteria are able to identify weak spots in computational models. The criteria described here form a starting point for the systematic validation of cortical neuronal network models, which will help improve the reliability of future models, and render them better building blocks for larger models of the brain. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 1 |u fzj | |
700 | 1 | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 2 |e Corresponding author |u fzj | |
773 | |a 10.3389/fncom.2018.00044 |g Vol. 12, p. 44 |0 PERI:(DE-600)2452964-3 |p 44 |t Frontiers in computational neuroscience |v 12 |y 2018 |x 1662-5188 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.pdf | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.gif?subformat=icon |x icon | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-1440 |x icon-1440 | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-180 |x icon-180 | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-640 |x icon-640 | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.pdf |y OpenAccess | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.gif?subformat=icon |x icon |y OpenAccess | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-180 |x icon-180 |y OpenAccess | |
856 | 4 | |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-640 |x icon-640 |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:848195 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144174 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138512 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
914 | 1 | |y 2018 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT COMPUT NEUROSC : 2015 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List | ||
980 | |a journal | ||
980 | |a VDB | ||
980 | |a I:(DE-Juel1)INM-6-20090406 | ||
980 | |a I:(DE-Juel1)INM-10-20170113 | ||
980 | |a I:(DE-Juel1)IAS-6-20130828 | ||
980 | |a APC | ||
980 | |a UNRESTRICTED | ||
980 | 1 | |a APC | |
980 | 1 | |a FullTexts | |
536 | |a Supercomputing and Modelling for the Human Brain |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |f SMHB |x 4 | ||
536 | |a The Human Brain Project |0 G:(EU-Grant)604102 |c 604102 |f FP7-ICT-2013-FET-F |x 3 | ||
536 | |a Human Brain Project Specific Grant Agreement 1 |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 2 | ||
536 | |a Brain-inspired multiscale computation in neuromorphic hybrid systems |0 G:(EU-Grant)269921 |c 269921 |f FP7-ICT-2009-6 |x 1 | ||
536 | |a Theory, modelling and simulation |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1531823184_18944 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
920 | |k Computational and Systems Neuroscience; INM-6 |0 I:(DE-Juel1)INM-6-20090406 |l Computational and Systems Neuroscience |x 0 | ||
920 | |k Theoretical Neuroscience; IAS-6 |0 I:(DE-Juel1)IAS-6-20130828 |l Theoretical Neuroscience |x 2 | ||
920 | |k Jara-Institut Brain structure-function relationships; INM-10 |0 I:(DE-Juel1)INM-10-20170113 |l Jara-Institut Brain structure-function relationships |x 1 | ||
990 | |a Maksimov, Andrei |0 P:(DE-HGF)0 |b 0 |e Corresponding author | ||
991 | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 2 |e Corresponding author |u fzj | ||
991 | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 1 |u fzj |