Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2018 

Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models

Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models

During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of...

More

Saved in:
Personal Name(s): Maksimov, Andrei (Corresponding author)
Diesmann, Markus / van Albada, Sacha (Corresponding author)
Contributing Institute: Computational and Systems Neuroscience; INM-6
Theoretical Neuroscience; IAS-6
Jara-Institut Brain structure-function relationships; INM-10
Published in: Frontiers in computational neuroscience, 12 (2018) S. 44
Imprint: Lausanne Frontiers Research Foundation 2018
DOI: 10.3389/fncom.2018.00044
PubMed ID: 30042668
Document Type: Journal Article
Research Program: Supercomputing and Modelling for the Human Brain
The Human Brain Project
Human Brain Project Specific Grant Agreement 1
Brain-inspired multiscale computation in neuromorphic hybrid systems
Theory, modelling and simulation
Link: Get full text
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.3389/fncom.2018.00044 in citations.
Please use the identifier: http://hdl.handle.net/2128/19324 in citations.

  • Description
  • Staff View
LEADER 07018nam a2200877 a 4500
001 848195
005 20220930130151.0
024 7 |a 10.3389/fncom.2018.00044  |2 doi 
024 7 |a 2128/19324  |2 Handle 
024 7 |a pmid:30042668  |2 pmid 
024 7 |a WOS:000438275900001  |2 WOS 
024 7 |a altmetric:42693001  |2 altmetric 
037 |a FZJ-2018-03461 
082 |a 610 
100 1 |a Maksimov, Andrei  |0 P:(DE-HGF)0  |b 0  |e Corresponding author 
245 |a Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models 
260 |a Lausanne  |c 2018  |b Frontiers Research Foundation 
520 |a During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of excitatory and inhibitory neuronal inputs; and stability, maintenance of activity at a steady level. Slice preparations exhibiting Up states demonstrate that balanced activity can be maintained by small local circuits. While computational models of cortical circuits have included different combinations of excitability, balance, and stability, they have done so without a systematic quantitative comparison with experimental data. Our study provides quantitative criteria for this purpose, by analyzing in-vitro and in-vivo neuronal activity and characterizing the dynamics on the neuronal and population levels. The criteria are defined with a tolerance that allows for differences between experiments, yet are sufficient to capture commonalities between persistently depolarized cortical network states and to help validate computational models of cortex. As test cases for the derived set of criteria, we analyze three widely used models of cortical circuits and find that each model possesses some of the experimentally observed features, but none satisfies all criteria simultaneously, showing that the criteria are able to identify weak spots in computational models. The criteria described here form a starting point for the systematic validation of cortical neuronal network models, which will help improve the reliability of future models, and render them better building blocks for larger models of the brain. 
588 |a Dataset connected to CrossRef 
700 1 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 1  |u fzj 
700 1 |a van Albada, Sacha  |0 P:(DE-Juel1)138512  |b 2  |e Corresponding author  |u fzj 
773 |a 10.3389/fncom.2018.00044  |g Vol. 12, p. 44  |0 PERI:(DE-600)2452964-3  |p 44  |t Frontiers in computational neuroscience  |v 12  |y 2018  |x 1662-5188 
856 4 |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.pdf 
856 4 |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.gif?subformat=icon  |x icon 
856 4 |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-1440  |x icon-1440 
856 4 |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-180  |x icon-180 
856 4 |u http://juser.fz-juelich.de/record/848195/files/2017-0102368-4.jpg?subformat=icon-640  |x icon-640 
856 4 |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.pdf  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.gif?subformat=icon  |x icon  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-1440  |x icon-1440  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-180  |x icon-180  |y OpenAccess 
856 4 |u http://juser.fz-juelich.de/record/848195/files/fncom-12-00044.jpg?subformat=icon-640  |x icon-640  |y OpenAccess 
909 C O |o oai:juser.fz-juelich.de:848195  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p ec_fundedresources  |p openCost  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-HGF)0 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)144174 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)138512 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-574  |2 G:(DE-HGF)POF3-500  |v Theory, modelling and simulation  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2018 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a DBCoverage  |0 StatID:(DE-HGF)1050  |2 StatID  |b BIOSIS Previews 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b FRONT COMPUT NEUROSC : 2015 
915 |a DBCoverage  |0 StatID:(DE-HGF)0501  |2 StatID  |b DOAJ Seal 
915 |a DBCoverage  |0 StatID:(DE-HGF)0500  |2 StatID  |b DOAJ 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a IF < 5  |0 StatID:(DE-HGF)9900  |2 StatID 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Thomson Reuters Master Journal List 
980 |a journal 
980 |a VDB 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a APC 
980 |a UNRESTRICTED 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Supercomputing and Modelling for the Human Brain  |0 G:(DE-Juel1)HGF-SMHB-2013-2017  |c HGF-SMHB-2013-2017  |f SMHB  |x 4 
536 |a The Human Brain Project  |0 G:(EU-Grant)604102  |c 604102  |f FP7-ICT-2013-FET-F  |x 3 
536 |a Human Brain Project Specific Grant Agreement 1  |0 G:(EU-Grant)720270  |c 720270  |f H2020-Adhoc-2014-20  |x 2 
536 |a Brain-inspired multiscale computation in neuromorphic hybrid systems  |0 G:(EU-Grant)269921  |c 269921  |f FP7-ICT-2009-6  |x 1 
536 |a Theory, modelling and simulation  |0 G:(DE-HGF)POF3-574  |c POF3-574  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1531823184_18944  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 2 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 1 
990 |a Maksimov, Andrei  |0 P:(DE-HGF)0  |b 0  |e Corresponding author 
991 |a van Albada, Sacha  |0 P:(DE-Juel1)138512  |b 2  |e Corresponding author  |u fzj 
991 |a Diesmann, Markus  |0 P:(DE-Juel1)144174  |b 1  |u fzj 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...