Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2018 

Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications

Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications

The quest towards increasing the energy density of traction battery technologies has led to the emergence and diversification of battery materials. The lithium sulfur battery (LSB) is in this regard a promising material for batteries due to its specific energy. However, due to its low volumetric ene...

More

Saved in:
Personal Name(s): Cerdas, Felipe (Corresponding author)
Titscher, Paul / Bognar, Nicolas / Schmuch, Richard / Winter, Martin / Kwade, Arno / Herrmann, Christoph
Contributing Institute: Helmholtz-Institut Münster Ionenleiter für Energiespeicher; IEK-12
Published in: Energies, 11 (2018) 1, S. 150 -
Imprint: Basel MDPI 2018
DOI: 10.3390/en11010150
Document Type: Journal Article
Research Program: Electrochemical Storage
Link: OpenAccess
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.3390/en11010150 in citations.
Please use the identifier: http://hdl.handle.net/2128/19599 in citations.

  • Description
  • Staff View

The quest towards increasing the energy density of traction battery technologies has led to the emergence and diversification of battery materials. The lithium sulfur battery (LSB) is in this regard a promising material for batteries due to its specific energy. However, due to its low volumetric energy density, the LSB faces challenges in mobility applications such as electric vehicles but also other transportation modes. To understand the potential environmental implication of LSB batteries, a comparative Life Cycle Assessment (LCA) was performed. For this study, electrodes for both an NMC111 with an anode graphite and a LSB battery cell with a lithium metal foil as anode were manufactured. Data from disassembly experiments performed on a real battery system for a mid-size passenger vehicle were used to build the required life cycle inventory. The energy consumption during the use phase was calculated using a simulative approach. A set of thirteen impact categories was evaluated and characterized with the ReCiPe methodology. The results of the LCA in this study allow identification of the main sources of environmental problems as well as possible strategies to improve the environmental impact of LSB batteries. In this regard, the high requirements of N-Methyl-2-pyrrolidone (NMP) for the processing of the sulfur cathode and the thickness of the lithium foil were identified as the most important drivers. We make recommendations for necessary further research in order to broaden the understanding concerning the potential environmental implication of the implementation of LSB batteries for mobility applications.

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...