This title appears in the Scientific Report :
2018
Please use the identifier:
http://hdl.handle.net/2128/20109 in citations.
Please use the identifier: http://dx.doi.org/10.1371/journal.pcbi.1006359 in citations.
A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas
A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas
Cortical activity has distinct features across scales, from the spiking statistics of individual cells to global resting-state networks. We here describe the first full-density multi-area spiking network model of cortex, using macaque visual cortex as a test system. The model represents each area by...
Saved in:
Please use the identifier: http://dx.doi.org/10.1371/journal.pcbi.1006359 in citations.
LEADER | 08020nam a2201057 a 4500 | ||
---|---|---|---|
001 | 851363 | ||
005 | 20220930130156.0 | ||
024 | 7 | |a 10.1371/journal.pcbi.1006359 |2 doi | |
024 | 7 | |a 1553-734X |2 ISSN | |
024 | 7 | |a 1553-7358 |2 ISSN | |
024 | 7 | |a 2128/20109 |2 Handle | |
024 | 7 | |a pmid:30335761 |2 pmid | |
024 | 7 | |a WOS:000450712400004 |2 WOS | |
024 | 7 | |a altmetric:4825248 |2 altmetric | |
037 | |a FZJ-2018-05048 | ||
082 | |a 570 | ||
100 | 1 | |a Schmidt, Maximilian |0 P:(DE-Juel1)145897 |b 0 | |
245 | |a A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas | ||
260 | |a San Francisco, Calif. |c 2018 |b Public Library of Science | ||
520 | |a Cortical activity has distinct features across scales, from the spiking statistics of individual cells to global resting-state networks. We here describe the first full-density multi-area spiking network model of cortex, using macaque visual cortex as a test system. The model represents each area by a microcircuit with area-specific architecture and features layer- and population-resolved connectivity between areas. Simulations reveal a structured asynchronous irregular ground state. In a metastable regime, the network reproduces spiking statistics from electrophysiological recordings and cortico-cortical interaction patterns in fMRI functional connectivity under resting-state conditions. Stable inter-area propagation is supported by cortico-cortical synapses that are moderately strong onto excitatory neurons and stronger onto inhibitory neurons. Causal interactions depend on both cortical structure and the dynamical state of populations. Activity propagates mainly in the feedback direction, similar to experimental results associated with visual imagery and sleep. The model unifies local and large-scale accounts of cortex, and clarifies how the detailed connectivity of cortex shapes its dynamics on multiple scales. Based on our simulations, we hypothesize that in the spontaneous condition the brain operates in a metastable regime where cortico-cortical projections target excitatory and inhibitory populations in a balanced manner that produces substantial inter-area interactions while maintaining global stability. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 1 | |
700 | 1 | |a Shen, Kelly |0 P:(DE-HGF)0 |b 2 | |
700 | 1 | |a Bezgin, Gleb |0 P:(DE-HGF)0 |b 3 | |
700 | 1 | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 4 | |
700 | 1 | |a van Albada, Sacha Jennifer |0 P:(DE-Juel1)138512 |b 5 |e Corresponding author | |
773 | |a 10.1371/journal.pcbi.1006359 |g Vol. 14, no. 10, p. e1006359 - |0 PERI:(DE-600)2193340-6 |n 10 |p e1006359 - |t PLoS Computational Biology |v 14 |y 2018 |x 1553-734X | ||
856 | 4 | |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.pdf | |
856 | 4 | |x icon |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.gif?subformat=icon | |
856 | 4 | |x icon-1440 |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.jpg?subformat=icon-1440 | |
856 | 4 | |x icon-180 |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.jpg?subformat=icon-180 | |
856 | 4 | |x icon-640 |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.jpg?subformat=icon-640 | |
856 | 4 | |x pdfa |u http://juser.fz-juelich.de/record/851363/files/InvoicePAB225705-R50002-1.pdf?subformat=pdfa | |
856 | 4 | |y OpenAccess |u http://juser.fz-juelich.de/record/851363/files/journal.pcbi.1006359.pdf | |
856 | 4 | |y OpenAccess |x pdfa |u http://juser.fz-juelich.de/record/851363/files/journal.pcbi.1006359.pdf?subformat=pdfa | |
909 | C | O | |o oai:juser.fz-juelich.de:851363 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145578 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144174 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)138512 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
914 | 1 | |y 2018 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS COMPUT BIOL : 2015 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List | ||
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)INM-6-20090406 | ||
980 | |a I:(DE-Juel1)INM-10-20170113 | ||
980 | |a I:(DE-Juel1)IAS-6-20130828 | ||
980 | |a APC | ||
980 | 1 | |a APC | |
980 | 1 | |a FullTexts | |
536 | |a Brain-inspired multiscale computation in neuromorphic hybrid systems |0 G:(EU-Grant)269921 |c 269921 |x 8 |f FP7-ICT-2009-6 | ||
536 | |a Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde |0 G:(GEPRIS)347572269 |c 347572269 |x 7 | ||
536 | |a Brain-Scale Simulations |0 G:(DE-Juel1)jinb33_20121101 |c jinb33_20121101 |x 6 |f Brain-Scale Simulations | ||
536 | |a Supercomputing and Modelling for the Human Brain |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |x 5 |f SMHB | ||
536 | |a The Human Brain Project |0 G:(EU-Grant)604102 |c 604102 |x 4 |f FP7-ICT-2013-FET-F | ||
536 | |a Human Brain Project |0 G:(EU-Grant)284941 |c 284941 |x 9 |f FP7-ICT-2011-FET-F | ||
536 | |a Human Brain Project Specific Grant Agreement 1 |0 G:(EU-Grant)720270 |c 720270 |x 3 |f H2020-Adhoc-2014-20 | ||
536 | |a Human Brain Project Specific Grant Agreement 2 |0 G:(EU-Grant)785907 |c 785907 |x 2 |f H2020-SGA-FETFLAG-HBP-2017 | ||
536 | |a Theory, modelling and simulation |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 1 |f POF III | ||
536 | |a Connectivity and Activity |0 G:(DE-HGF)POF3-571 |c POF3-571 |x 0 |f POF III | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1542788979_6274 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
920 | |k Computational and Systems Neuroscience; INM-6 |0 I:(DE-Juel1)INM-6-20090406 |l Computational and Systems Neuroscience |x 0 | ||
920 | |k Theoretical Neuroscience; IAS-6 |0 I:(DE-Juel1)IAS-6-20130828 |l Theoretical Neuroscience |x 2 | ||
920 | |k Jara-Institut Brain structure-function relationships; INM-10 |0 I:(DE-Juel1)INM-10-20170113 |l Jara-Institut Brain structure-function relationships |x 1 | ||
990 | |a Schmidt, Maximilian |0 P:(DE-Juel1)145897 |b 0 | ||
991 | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 5 |e Corresponding author | ||
991 | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 4 | ||
991 | |a Bezgin, Gleb |0 P:(DE-HGF)0 |b 3 | ||
991 | |a Shen, Kelly |0 P:(DE-HGF)0 |b 2 | ||
991 | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 1 |