This title appears in the Scientific Report :
2019
Please use the identifier:
http://dx.doi.org/10.1104/pp.18.01074 in citations.
Please use the identifier: http://hdl.handle.net/2128/23489 in citations.
Identification and microbial production of the raspberry phenol salidroside that is active against Huntington's disease
Identification and microbial production of the raspberry phenol salidroside that is active against Huntington's disease
Edible berries are considered to be among nature’s treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a s...
Saved in:
Personal Name(s): | Kallscheuer, Nicolai |
---|---|
Menezes, Regina / Foito, Alexandre / Henriques da Silva, Marcelo D / Braga, Adelaide / Dekker, Wijbrand / Méndez Sevillano, David / Rosado-Ramos, Rita / Jardim, Carolina / Oliveira, Joana / Ferreira, Patricia / Rocha, Isabel / Silva, Ana Rita / Sousa, Márcio / Allwood, James William / Bott, Michael / Faria, Nuno / Stewart, Derek / Ottens, Marcel / Naesby, Michael / Santos, Claudia Nunes dos / Marienhagen, Jan (Corresponding author) | |
Contributing Institute: |
Biotechnologie; IBG-1 |
Published in: | Plant physiology, 179 (2019) S. 969–985 |
Imprint: |
Rockville, Md.
Soc.
2019
|
DOI: |
10.1104/pp.18.01074 |
PubMed ID: |
30397021 |
Document Type: |
Journal Article |
Research Program: |
Innovative Synergisms |
Link: |
Restricted Restricted Published on 2019-02-26. Available in OpenAccess from 2020-02-26. Published on 2019-02-26. Available in OpenAccess from 2020-02-26. |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/23489 in citations.
LEADER | 07991nam a2201273 a 4500 | ||
---|---|---|---|
001 | 858527 | ||
005 | 20220930130203.0 | ||
024 | 7 | |a 10.1104/pp.18.01074 |2 doi | |
024 | 7 | |a 0032-0889 |2 ISSN | |
024 | 7 | |a 1532-2548 |2 ISSN | |
024 | 7 | |a pmid:30397021 |2 pmid | |
024 | 7 | |a WOS:000459688800017 |2 WOS | |
024 | 7 | |a altmetric:50818594 |2 altmetric | |
024 | 7 | |a 2128/23489 |2 Handle | |
037 | |a FZJ-2018-07398 | ||
082 | |a 580 | ||
100 | 1 | |a Kallscheuer, Nicolai |0 P:(DE-Juel1)157678 |b 0 | |
245 | |a Identification and microbial production of the raspberry phenol salidroside that is active against Huntington's disease | ||
260 | |a Rockville, Md. |c 2019 |b Soc. | ||
500 | |a Biotechnologie 1 | ||
520 | |a Edible berries are considered to be among nature’s treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer’s, Parkinson’s, or Huntington’s disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington’s disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S. cerevisiae and Corynebacterium glutamicum. The best-performing S. cerevisiae strain was capable of producing 2.1 mm (640 mg L−1) salidroside from Glc in shake flasks, whereas an engineered C. glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L−1) salidroside in bioreactor cultivations (yield: 0.81 mol mol−1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Menezes, Regina |0 P:(DE-HGF)0 |b 1 | |
700 | 1 | |a Foito, Alexandre |0 P:(DE-HGF)0 |b 2 | |
700 | 1 | |a Henriques da Silva, Marcelo D |0 P:(DE-HGF)0 |b 3 | |
700 | 1 | |a Braga, Adelaide |0 P:(DE-HGF)0 |b 4 | |
700 | 1 | |a Dekker, Wijbrand |0 P:(DE-HGF)0 |b 5 | |
700 | 1 | |a Méndez Sevillano, David |0 P:(DE-HGF)0 |b 6 | |
700 | 1 | |a Rosado-Ramos, Rita |0 P:(DE-HGF)0 |b 7 | |
700 | 1 | |a Jardim, Carolina |0 P:(DE-HGF)0 |b 8 | |
700 | 1 | |a Oliveira, Joana |0 P:(DE-HGF)0 |b 9 | |
700 | 1 | |a Ferreira, Patricia |0 P:(DE-HGF)0 |b 10 | |
700 | 1 | |a Rocha, Isabel |0 P:(DE-HGF)0 |b 11 | |
700 | 1 | |a Silva, Ana Rita |0 P:(DE-HGF)0 |b 12 | |
700 | 1 | |a Sousa, Márcio |0 P:(DE-HGF)0 |b 13 | |
700 | 1 | |a Allwood, James William |0 P:(DE-HGF)0 |b 14 | |
700 | 1 | |a Bott, Michael |0 P:(DE-Juel1)128943 |b 15 | |
700 | 1 | |a Faria, Nuno |0 P:(DE-HGF)0 |b 16 | |
700 | 1 | |a Stewart, Derek |0 P:(DE-HGF)0 |b 17 | |
700 | 1 | |a Ottens, Marcel |0 P:(DE-HGF)0 |b 18 | |
700 | 1 | |a Naesby, Michael |0 P:(DE-HGF)0 |b 19 | |
700 | 1 | |a Santos, Claudia Nunes dos |0 P:(DE-HGF)0 |b 20 | |
700 | 1 | |a Marienhagen, Jan |0 P:(DE-Juel1)144031 |b 21 |e Corresponding author | |
773 | |a 10.1104/pp.18.01074 |g p. pp.01074.2018 - |0 PERI:(DE-600)2004346-6 |p 969–985 |t Plant physiology |v 179 |y 2019 |x 1532-2548 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/858527/files/969.full.pdf |y Restricted | |
856 | 4 | |u http://juser.fz-juelich.de/record/858527/files/969.full.pdf?subformat=pdfa |x pdfa |y Restricted | |
856 | 4 | |u http://juser.fz-juelich.de/record/858527/files/Kallscheuer%20Salidroside%202019%20incl.%20Supplements.pdf |y Published on 2019-02-26. Available in OpenAccess from 2020-02-26. | |
856 | 4 | |u http://juser.fz-juelich.de/record/858527/files/Kallscheuer%20Salidroside%202019%20incl.%20Supplements.pdf?subformat=pdfa |x pdfa |y Published on 2019-02-26. Available in OpenAccess from 2020-02-26. | |
909 | C | O | |o oai:juser.fz-juelich.de:858527 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157678 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)128943 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 21 |6 P:(DE-Juel1)144031 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |2 G:(DE-HGF)POF3-500 |v Innovative Synergisms |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
914 | 1 | |y 2019 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search | ||
915 | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT PHYSIOL : 2017 | ||
915 | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT PHYSIOL : 2017 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database | ||
915 | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List | ||
980 | |a journal | ||
980 | |a VDB | ||
980 | |a I:(DE-Juel1)IBG-1-20101118 | ||
980 | |a APC | ||
980 | |a UNRESTRICTED | ||
980 | 1 | |a APC | |
980 | 1 | |a FullTexts | |
536 | |a Innovative Synergisms |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582017732_1128 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
920 | |l yes | ||
920 | |k Biotechnologie; IBG-1 |0 I:(DE-Juel1)IBG-1-20101118 |l Biotechnologie |x 0 | ||
991 | |a Marienhagen, Jan |0 P:(DE-Juel1)144031 |b 21 |e Corresponding author | ||
991 | |a Santos, Claudia Nunes dos |0 P:(DE-HGF)0 |b 20 | ||
990 | |a Kallscheuer, Nicolai |0 P:(DE-Juel1)157678 |b 0 | ||
991 | |a Oliveira, Joana |0 P:(DE-HGF)0 |b 9 | ||
991 | |a Jardim, Carolina |0 P:(DE-HGF)0 |b 8 | ||
991 | |a Naesby, Michael |0 P:(DE-HGF)0 |b 19 | ||
991 | |a Rosado-Ramos, Rita |0 P:(DE-HGF)0 |b 7 | ||
991 | |a Ottens, Marcel |0 P:(DE-HGF)0 |b 18 | ||
991 | |a Méndez Sevillano, David |0 P:(DE-HGF)0 |b 6 | ||
991 | |a Stewart, Derek |0 P:(DE-HGF)0 |b 17 | ||
991 | |a Dekker, Wijbrand |0 P:(DE-HGF)0 |b 5 | ||
991 | |a Braga, Adelaide |0 P:(DE-HGF)0 |b 4 | ||
991 | |a Faria, Nuno |0 P:(DE-HGF)0 |b 16 | ||
991 | |a Henriques da Silva, Marcelo D |0 P:(DE-HGF)0 |b 3 | ||
991 | |a Bott, Michael |0 P:(DE-Juel1)128943 |b 15 | ||
991 | |a Foito, Alexandre |0 P:(DE-HGF)0 |b 2 | ||
991 | |a Allwood, James William |0 P:(DE-HGF)0 |b 14 | ||
991 | |a Menezes, Regina |0 P:(DE-HGF)0 |b 1 | ||
991 | |a Sousa, Márcio |0 P:(DE-HGF)0 |b 13 | ||
991 | |a Silva, Ana Rita |0 P:(DE-HGF)0 |b 12 | ||
991 | |a Rocha, Isabel |0 P:(DE-HGF)0 |b 11 | ||
991 | |a Ferreira, Patricia |0 P:(DE-HGF)0 |b 10 |