Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2019 

Self-consistent formulations for stochastic nonlinear neuronal dynamics

Self-consistent formulations for stochastic nonlinear neuronal dynamics

Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of input signals. Such noise in the input, however, changes the dynamics with respect to the...

More

Saved in:
Personal Name(s): Stapmanns, Jonas (Corresponding author)
Kühn, Tobias (Corresponding author) / Dahmen, David / Luu, Tom / Honerkamp, Carsten (Last author) / Helias, Moritz (Last author)
Contributing Institute: Computational and Systems Neuroscience; INM-6
Theorie der Starken Wechselwirkung; IAS-4
Theorie der starken Wechselwirkung; IKP-3
Jara-Institut Brain structure-function relationships; INM-10
Theoretical Neuroscience; IAS-6
Imprint: 2018
Document Type: Preprint
Research Program: Human Brain Project Specific Grant Agreement 1
Supercomputing and Modelling for the Human Brain
Theory of multi-scale neuronal networks
Connectivity and Activity
Theory, modelling and simulation
Human Brain Project Specific Grant Agreement 2
Link: OpenAccess
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://hdl.handle.net/2128/21891 in citations.

  • Description
  • Staff View
LEADER 06275nam a2200769 a 4500
001 859972
005 20210130000428.0
024 7 |a arXiv:1812.09345  |2 arXiv 
024 7 |a 2128/21891  |2 Handle 
024 7 |a altmetric:53173566  |2 altmetric 
037 |a FZJ-2019-00778 
041 |a English 
100 1 |a Stapmanns, Jonas  |0 P:(DE-Juel1)171475  |b 0  |e Corresponding author 
245 |a Self-consistent formulations for stochastic nonlinear neuronal dynamics 
260 |c 2018 
500 |a 6 figures 
520 |a Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of input signals. Such noise in the input, however, changes the dynamics with respect to the deterministic model. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose De Dominicis-Janssen (MSDRJ) formalism and present the fluctuation expansion of the effective action and the functional renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup (OM) formalism, which lends itself to direct physical interpretation, and the MSRDJ effective action, which is computationally advantageous. These results in particular allow the extension of the OM formalism to non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects. Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of flow equations for the vertex functions by adapting the Blaizot, Méndez and Wschebor (BMW) approximation from the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible example of a stochastic differential equation that has generic features of neuronal dynamics. 
588 |a Dataset connected to arXivarXiv 
700 1 |a Kühn, Tobias  |0 P:(DE-Juel1)164473  |b 1  |e Corresponding author 
700 1 |a Dahmen, David  |0 P:(DE-Juel1)156459  |b 2 
700 1 |a Luu, Tom  |0 P:(DE-Juel1)159481  |b 3 
700 1 |a Honerkamp, Carsten  |0 P:(DE-HGF)0  |b 4  |e Last author 
700 1 |a Helias, Moritz  |0 P:(DE-Juel1)144806  |b 5  |e Last author 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/859972/files/1812.09345.pdf 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/859972/files/1812.09345.pdf?subformat=pdfa 
909 C O |o oai:juser.fz-juelich.de:859972  |p openaire  |p open_access  |p driver  |p VDB  |p ec_fundedresources  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)171475 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)164473 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)156459 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)159481 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 5  |6 P:(DE-Juel1)144806 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-574  |2 G:(DE-HGF)POF3-500  |v Theory, modelling and simulation  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-571  |2 G:(DE-HGF)POF3-500  |v Connectivity and Activity  |x 1  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2019 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
980 |a preprint 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a I:(DE-Juel1)IKP-3-20111104 
980 |a I:(DE-Juel1)IAS-4-20090406 
980 1 |a FullTexts 
536 |a Human Brain Project Specific Grant Agreement 1  |0 G:(EU-Grant)720270  |c 720270  |f H2020-Adhoc-2014-20  |x 4 
536 |a Supercomputing and Modelling for the Human Brain  |0 G:(DE-Juel1)HGF-SMHB-2013-2017  |c HGF-SMHB-2013-2017  |f SMHB  |x 3 
536 |a Theory of multi-scale neuronal networks  |0 G:(DE-Juel1)HGF-SMHB-2014-2018  |c HGF-SMHB-2014-2018  |f MSNN  |x 2 
536 |a Connectivity and Activity  |0 G:(DE-HGF)POF3-571  |c POF3-571  |f POF III  |x 1 
536 |a Theory, modelling and simulation  |0 G:(DE-HGF)POF3-574  |c POF3-574  |f POF III  |x 0 
536 |a Human Brain Project Specific Grant Agreement 2  |0 G:(EU-Grant)785907  |c 785907  |f H2020-SGA-FETFLAG-HBP-2017  |x 5 
336 |a preprint  |2 DRIVER 
336 |a Excerpta medica / 28  |0 28  |2 EndNote 
336 |a WORKING_PAPER  |2 ORCID 
336 |a Preprint  |b preprint  |m preprint  |0 PUB:(DE-HGF)25  |s 1553494325_26578  |2 PUB:(DE-HGF) 
336 |a Output Types/Working Paper  |2 DataCite 
336 |a ARTICLE  |2 BibTeX 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
920 |k Theorie der Starken Wechselwirkung; IAS-4  |0 I:(DE-Juel1)IAS-4-20090406  |l Theorie der Starken Wechselwirkung  |x 4 
920 |k Theorie der starken Wechselwirkung; IKP-3  |0 I:(DE-Juel1)IKP-3-20111104  |l Theorie der starken Wechselwirkung  |x 3 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 2 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 1 
990 |a Stapmanns, Jonas  |0 P:(DE-Juel1)171475  |b 0  |e Corresponding author 
991 |a Helias, Moritz  |0 P:(DE-Juel1)144806  |b 5  |e Last author 
991 |a Honerkamp, Carsten  |0 P:(DE-HGF)0  |b 4  |e Last author 
991 |a Luu, Tom  |0 P:(DE-Juel1)159481  |b 3 
991 |a Dahmen, David  |0 P:(DE-Juel1)156459  |b 2 
991 |a Kühn, Tobias  |0 P:(DE-Juel1)164473  |b 1  |e Corresponding author 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...