This title appears in the Scientific Report : 2019 

Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors
Liang, Yuanying
Wu, Changtong / Figueroa-Miranda, Gabriela / Offenhäusser, Andreas / Mayer, Dirk (Corresponding author)
Bioelektronik; ICS-8
Biosensors and bioelectronics, 144 (2019) S. 111668 -
Amsterdam [u.a.] Elsevier Science 2019
10.1016/j.bios.2019.111668
Journal Article
Controlling Configuration-Based Phenomena
Please use the identifier: http://dx.doi.org/10.1016/j.bios.2019.111668 in citations.
LEADER 05494coc a2200769uu 4500
001 865136
005 20200402205940.0
024 7 |a 10.1016/j.bios.2019.111668  |2 doi 
024 7 |a 0956-5663  |2 ISSN 
024 7 |a 1873-4235  |2 ISSN 
024 7 |a 31522101  |2 pmid 
024 7 |a WOS:000497249300025  |2 WOS 
037 |a FZJ-2019-04688 
082 |a 610 
100 1 |a Liang, Yuanying  |0 P:(DE-Juel1)168271  |b 0 
245 |a Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors 
260 |a Amsterdam [u.a.]  |c 2019  |b Elsevier Science 
520 |a Electrochemical aptamer receptor/transducer systems are key elements of emerging E-AB sensors (aptasensor) used for the detection of various kinds of targets. However, the performance of these amperometric sensors is often limited by the low density of receptors attached to the sensor surface and high background signals. In the present work, interdigitated organic electrochemical transistors (iOECT) were used as a transducer to enhance the sensitivity and dynamic detection range of aptasensors. Therefore, the electrode of an amperometric sensor was utilized as gate electrode to operate the iOECT. This device was used to detect the low weight target molecule adenosine triphosphate (ATP), a common biomarker, which plays an important role for cardiovascular, neurodegenerative, and immune deficiency diseases. The novel aptasensor can selectively detect ATP with ultrahigh sensitivity down to the concentration of 10 pM, which is four orders of magnitude lower than the detection limit of the same aptasensor using an amperometric transducer principle (limit-of-detection of 106 nM) and most other previously reported electrochemical sensors. Furthermore, sensor regeneration was demonstrated, which facilitates reusability of OECT aptasensors. The small device size in combination with high transconductances paves the way for the development of highly sensitive integrated micro-biosensors for point-of-care applications. 
588 |a Dataset connected to CrossRef 
700 1 |a Wu, Changtong  |0 P:(DE-Juel1)171355  |b 1 
700 1 |a Figueroa-Miranda, Gabriela  |0 P:(DE-HGF)0  |b 2 
700 1 |a Offenhäusser, Andreas  |0 P:(DE-Juel1)128713  |b 3 
700 1 |a Mayer, Dirk  |0 P:(DE-Juel1)128707  |b 4  |e Corresponding author 
773 |a 10.1016/j.bios.2019.111668  |g Vol. 144, p. 111668 -  |0 PERI:(DE-600)1496379-6  |p 111668 -  |t Biosensors and bioelectronics  |v 144  |y 2019  |x 0956-5663 
856 0 |f h.lexis@fz-juelich.de 
909 C O |o oai:juser.fz-juelich.de:865136  |p VDB 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)168271 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)171355 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-HGF)0 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)128713 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 4  |6 P:(DE-Juel1)128707 
913 1 |a DE-HGF  |b Key Technologies  |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)  |1 G:(DE-HGF)POF3-520  |0 G:(DE-HGF)POF3-523  |2 G:(DE-HGF)POF3-500  |v Controlling Configuration-Based Phenomena  |x 0 
914 1 |y 2019 
915 |a Nationallizenz  |0 StatID:(DE-HGF)0420  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b BIOSENS BIOELECTRON : 2017 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a DBCoverage  |0 StatID:(DE-HGF)0600  |2 StatID  |b Ebsco Academic Search 
915 |a Peer Review  |0 StatID:(DE-HGF)0030  |2 StatID  |b ASC 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List 
915 |a WoS  |0 StatID:(DE-HGF)0110  |2 StatID  |b Science Citation Index 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a DBCoverage  |0 StatID:(DE-HGF)1060  |2 StatID  |b Current Contents - Agriculture, Biology and Environmental Sciences 
915 |a DBCoverage  |0 StatID:(DE-HGF)1050  |2 StatID  |b BIOSIS Previews 
915 |a IF >= 5  |0 StatID:(DE-HGF)9905  |2 StatID  |b BIOSENS BIOELECTRON : 2017 
961 |a h.lexis@fz-juelich.de  |i 2019-09-16T09:41:11.439153  |c 2019-09-16T15:16:02.211261  |z 2019-09-16T15:16:02.211261  |x 2019-09-16T09:41:11.439153 
980 |a journal 
980 |a VDB 
980 |a I:(DE-Juel1)ICS-8-20110106 
980 |a UNRESTRICTED 
536 |a Controlling Configuration-Based Phenomena  |0 G:(DE-HGF)POF3-523  |c POF3-523  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1568639728_13617  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Energy 2.0  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
981 |a I:(DE-Juel1)IBI-3-20200312 
920 |l yes 
920 |k Bioelektronik; ICS-8  |0 I:(DE-Juel1)ICS-8-20110106  |l Bioelektronik  |x 0 
990 |a Liang, Yuanying  |0 P:(DE-Juel1)168271  |b 0 
991 |a Mayer, Dirk  |0 P:(DE-Juel1)128707  |b 4  |e Corresponding author 
991 |a Offenhäusser, Andreas  |0 P:(DE-Juel1)128713  |b 3 
991 |a Figueroa-Miranda, Gabriela  |0 P:(DE-HGF)0  |b 2 
991 |a Wu, Changtong  |0 P:(DE-Juel1)171355  |b 1