This title appears in the Scientific Report :
2019
Please use the identifier:
http://hdl.handle.net/2128/23030 in citations.
Please use the identifier: http://dx.doi.org/10.1523/JNEUROSCI.0656-19.2019 in citations.
Trans-thalamic Pathways: Strong Candidates for Supporting Communication between Functionally Distinct Cortical Areas
Trans-thalamic Pathways: Strong Candidates for Supporting Communication between Functionally Distinct Cortical Areas
The thalamus was long considered a passive relay of sensory information with little or no active role in higher cognitive functions. However, mounting evidence suggests that thalamic nuclei form complex loops with the cortex and are involved in a myriad of cognitive processes, including attention an...
Saved in:
Please use the identifier: http://dx.doi.org/10.1523/JNEUROSCI.0656-19.2019 in citations.
LEADER | 06124nam a2200853 a 4500 | ||
---|---|---|---|
001 | 865292 | ||
005 | 20240313094940.0 | ||
024 | 7 | |a 10.1523/JNEUROSCI.0656-19.2019 |2 doi | |
024 | 7 | |a 0270-6474 |2 ISSN | |
024 | 7 | |a 1529-2401 |2 ISSN | |
024 | 7 | |a 2128/23030 |2 Handle | |
024 | 7 | |a altmetric:65899318 |2 altmetric | |
024 | 7 | |a pmid:31484708 |2 pmid | |
024 | 7 | |a WOS:000484394400002 |2 WOS | |
037 | |a FZJ-2019-04811 | ||
082 | |a 610 | ||
100 | 1 | |a Zajzon, Barna |0 P:(DE-Juel1)171197 |b 0 |e Corresponding author | |
245 | |a Trans-thalamic Pathways: Strong Candidates for Supporting Communication between Functionally Distinct Cortical Areas | ||
260 | |a Washington, DC |c 2019 |b Soc.69657 | ||
264 | 1 | |3 online |2 Crossref |b Society for Neuroscience |c 2019-09-04 | |
264 | 1 | |3 print |2 Crossref |b Society for Neuroscience |c 2019-09-04 | |
264 | 1 | |3 print |2 Crossref |b Society for Neuroscience |c 2019-09-04 | |
520 | |a The thalamus was long considered a passive relay of sensory information with little or no active role in higher cognitive functions. However, mounting evidence suggests that thalamic nuclei form complex loops with the cortex and are involved in a myriad of cognitive processes, including attention and working memory (Ward, 2013). Although first-order thalamic nuclei (e.g., lateral geniculate nucleus) play a key role in the transmission of ascending sensory input to the cortex, higher-order nuclei (e.g., pulvinar or mediodorsal nucleus) are believed to be involved in sustaining and modulating communication within and between cortical regions (Guillery, 1995). Understanding the functional role of such nuclei in a mechanistic manner requires, in addition to behavioral experiments, a detailed anatomical and physiological mapping of the thalamocortical circuitry. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Morales-Gregorio, Aitor |0 P:(DE-Juel1)176593 |b 1 | |
773 | 1 | 8 | |a 10.1523/jneurosci.0656-19.2019 |b Society for Neuroscience |d 2019-09-04 |n 36 |p 7034-7036 |3 journal-article |2 Crossref |t The Journal of Neuroscience |v 39 |y 2019 |x 0270-6474 |
773 | |a 10.1523/JNEUROSCI.0656-19.2019 |g Vol. 39, no. 36, p. 7034 - 7036 |0 PERI:(DE-600)1475274-8 |n 36 |p 7034-7036 |t The journal of neuroscience |v 39 |y 2019 |x 0270-6474 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/865292/files/7034.full-2.pdf |y Published on 2019-09-04. Available in OpenAccess from 2020-03-04. | |
856 | 4 | |u http://juser.fz-juelich.de/record/865292/files/7034.full-2.pdf?subformat=pdfa |x pdfa |y Published on 2019-09-04. Available in OpenAccess from 2020-03-04. | |
909 | C | O | |o oai:juser.fz-juelich.de:865292 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171197 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176593 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Theory, modelling and simulation |x 0 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Connectivity and Activity |x 1 | |
914 | 1 | |y 2019 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search | ||
915 | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NEUROSCI : 2017 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC | ||
915 | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J NEUROSCI : 2017 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List | ||
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a I:(DE-Juel1)INM-6-20090406 | ||
980 | |a I:(DE-Juel1)IAS-6-20130828 | ||
980 | |a I:(DE-Juel1)INM-10-20170113 | ||
980 | |a UNRESTRICTED | ||
536 | |a Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde |0 G:(GEPRIS)347572269 |c 347572269 |x 4 | ||
536 | |a Human Brain Project Specific Grant Agreement 2 |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 | ||
536 | |a W2/W3 Professorinnen Programm der Helmholtzgemeinschaft |0 G:(DE-HGF)B1175.01.12 |c B1175.01.12 |x 2 | ||
536 | |a Connectivity and Activity |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 1 | ||
536 | |a Theory, modelling and simulation |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708436222_10688 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)IAS-6-20130828 | ||
920 | |k Computational and Systems Neuroscience; INM-6 |0 I:(DE-Juel1)INM-6-20090406 |l Computational and Systems Neuroscience |x 0 | ||
920 | |k Jara-Institut Brain structure-function relationships; INM-10 |0 I:(DE-Juel1)INM-10-20170113 |l Jara-Institut Brain structure-function relationships |x 2 | ||
920 | |k Computational and Systems Neuroscience; IAS-6 |0 I:(DE-Juel1)IAS-6-20130828 |l Theoretical Neuroscience |x 1 | ||
990 | |a Zajzon, Barna |0 P:(DE-Juel1)171197 |b 0 |e Corresponding author | ||
991 | |a Morales-Gregorio, Aitor |0 P:(DE-Juel1)176593 |b 1 |