This title appears in the Scientific Report : 2019 

Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR
Novelli, Anna (Corresponding author)
Vereecken, Luc / Bohn, Birger / Dorn, Hans-Peter / Gkatzelis, Georgios I. / Hofzumahaus, Andreas / Holland, Frank / Reimer, David / Rohrer, Franz / Rosanka, Simon / Taraborrelli, Domenico / Tillmann, Ralf / Wegener, Robert / Yu, Zhujun / Kiendler-Scharr, Astrid / Wahner, Andreas / Fuchs, Hendrik
Troposphäre; IEK-8
Atmospheric chemistry and physics, 20 (2020) 6, S. 1-32
Katlenburg-Lindau EGU 2020
10.5194/acp-20-3333-2020
Journal Article
Tropospheric trace substances and their transformation processes
Get full text
OpenAccess
Get full text
OpenAccess
Please use the identifier: http://dx.doi.org/10.5194/acp-20-3333-2020 in citations.
Please use the identifier: http://hdl.handle.net/2128/24637 in citations.
LEADER 09816coc a2201297uu 4500
001 868151
005 20200702121927.0
024 7 |a 10.5194/acp-20-3333-2020  |2 doi 
024 7 |a 1680-7316  |2 ISSN 
024 7 |a 1680-7324  |2 ISSN 
024 7 |a 2128/24637  |2 Handle 
024 7 |a altmetric:77936945  |2 altmetric 
024 7 |a WOS:000521593900003  |2 WOS 
037 |a FZJ-2019-06725 
082 |a 550 
100 1 |a Novelli, Anna  |0 P:(DE-Juel1)166537  |b 0  |e Corresponding author 
245 |a Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR 
260 |a Katlenburg-Lindau  |c 2020  |b EGU 
520 |a Theoretical, laboratory, and chamber studies have shown fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene, largely due to unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2 ppbv – parts per billion by volume) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations, and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehydic hydrogen shift (rate constant ∼10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO2), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly independent of the adopted yield of HPALD and di-HPCARP-RO2 as both degrade relatively fast (<1 h), forming the OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the distribution of oxygenated products, which affect radical levels and organic aerosol downwind of unpolluted isoprene-dominated regions. 
588 |a Dataset connected to CrossRef 
700 1 |a Vereecken, Luc  |0 P:(DE-Juel1)167140  |b 1 
700 1 |a Bohn, Birger  |0 P:(DE-Juel1)2693  |b 2 
700 1 |a Dorn, Hans-Peter  |0 P:(DE-Juel1)16317  |b 3 
700 1 |a Gkatzelis, Georgios I.  |0 P:(DE-Juel1)165645  |b 4 
700 1 |a Hofzumahaus, Andreas  |0 P:(DE-Juel1)16326  |b 5 
700 1 |a Holland, Frank  |0 P:(DE-Juel1)16342  |b 6  |u fzj 
700 1 |a Reimer, David  |0 P:(DE-Juel1)171432  |b 7  |u fzj 
700 1 |a Rohrer, Franz  |0 P:(DE-Juel1)16347  |b 8  |u fzj 
700 1 |a Rosanka, Simon  |0 P:(DE-Juel1)173788  |b 9 
700 1 |a Taraborrelli, Domenico  |0 P:(DE-Juel1)167439  |b 10 
700 1 |a Tillmann, Ralf  |0 P:(DE-Juel1)5344  |b 11  |u fzj 
700 1 |a Wegener, Robert  |0 P:(DE-Juel1)2367  |b 12 
700 1 |a Yu, Zhujun  |0 P:(DE-Juel1)159354  |b 13 
700 1 |a Kiendler-Scharr, Astrid  |0 P:(DE-Juel1)4528  |b 14 
700 1 |a Wahner, Andreas  |0 P:(DE-Juel1)16324  |b 15 
700 1 |a Fuchs, Hendrik  |0 P:(DE-Juel1)7363  |b 16 
773 |a 10.5194/acp-20-3333-2020  |g Vol. 20, no. 6, p. 3333 - 3355  |0 PERI:(DE-600)2069847-1  |n 6  |p 1-32  |t Atmospheric chemistry and physics  |v 20  |y 2020  |x 1680-7316 
856 0 |f h.lexis@fz-juelich.de 
856 4 |u http://juser.fz-juelich.de/record/868151/files/invoice_Helmholtz-PUC-2020-25.pdf 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/868151/files/acp-20-3333-2020.pdf 
856 4 |x pdfa  |u http://juser.fz-juelich.de/record/868151/files/invoice_Helmholtz-PUC-2020-25.pdf?subformat=pdfa 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/868151/files/acp-20-3333-2020.pdf?subformat=pdfa 
876 7 |c 2070.00  |e APC  |d 2020-04-03  |j Zahlung erfolgt  |p acp-2019-794  |8 Helmholtz-PUC-2020-25  |9 2020-04-02  |x ZB  |z Belegnr. 1200151871 
909 C O |o oai:juser.fz-juelich.de:868151  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB:Earth_Environment  |p VDB  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)166537 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)167140 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)2693 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)16317 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 4  |6 P:(DE-Juel1)165645 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 5  |6 P:(DE-Juel1)16326 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 6  |6 P:(DE-Juel1)16342 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 7  |6 P:(DE-Juel1)171432 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 8  |6 P:(DE-Juel1)16347 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 9  |6 P:(DE-Juel1)173788 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 10  |6 P:(DE-Juel1)167439 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 11  |6 P:(DE-Juel1)5344 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 12  |6 P:(DE-Juel1)2367 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 13  |6 P:(DE-Juel1)159354 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 14  |6 P:(DE-Juel1)4528 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 15  |6 P:(DE-Juel1)16324 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 16  |6 P:(DE-Juel1)7363 
913 1 |a DE-HGF  |b Marine, Küsten- und Polare Systeme  |l Atmosphäre und Klima  |1 G:(DE-HGF)POF3-240  |0 G:(DE-HGF)POF3-243  |2 G:(DE-HGF)POF3-200  |v Tropospheric trace substances and their transformation processes  |x 0 
914 1 |y 2019 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a DBCoverage  |0 StatID:(DE-HGF)1150  |2 StatID  |b Current Contents - Physical, Chemical and Earth Sciences 
915 |a IF >= 5  |0 StatID:(DE-HGF)9905  |2 StatID  |b ATMOS CHEM PHYS : 2017 
915 |a DBCoverage  |0 StatID:(DE-HGF)0501  |2 StatID  |b DOAJ Seal 
915 |a DBCoverage  |0 StatID:(DE-HGF)0500  |2 StatID  |b DOAJ 
915 |a WoS  |0 StatID:(DE-HGF)0110  |2 StatID  |b Science Citation Index 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a Peer Review  |0 StatID:(DE-HGF)0030  |2 StatID  |b DOAJ : Peer review 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b ATMOS CHEM PHYS : 2017 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List 
961 |a h.lexis@fz-juelich.de  |i 2019-12-18T09:27:11.598589  |c 2020-04-02T14:31:24.459021  |z 2020-04-02T14:31:24.459021  |x 2019-12-18T09:27:11.598589 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)IEK-8-20101013 
980 |a APC 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Tropospheric trace substances and their transformation processes  |0 G:(DE-HGF)POF3-243  |c POF3-243  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1585830425_13540  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Slovenščina 2.0  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Troposphäre; IEK-8  |0 I:(DE-Juel1)IEK-8-20101013  |l Troposphäre  |x 0 
991 |a Fuchs, Hendrik  |0 P:(DE-Juel1)7363  |b 16 
991 |a Wahner, Andreas  |0 P:(DE-Juel1)16324  |b 15 
991 |a Rosanka, Simon  |0 P:(DE-Juel1)173788  |b 9 
991 |a Kiendler-Scharr, Astrid  |0 P:(DE-Juel1)4528  |b 14 
991 |a Rohrer, Franz  |0 P:(DE-Juel1)16347  |b 8  |u fzj 
991 |a Yu, Zhujun  |0 P:(DE-Juel1)159354  |b 13 
991 |a Reimer, David  |0 P:(DE-Juel1)171432  |b 7  |u fzj 
991 |a Wegener, Robert  |0 P:(DE-Juel1)2367  |b 12 
991 |a Holland, Frank  |0 P:(DE-Juel1)16342  |b 6  |u fzj 
990 |a Novelli, Anna  |0 P:(DE-Juel1)166537  |b 0  |e Corresponding author 
991 |a Tillmann, Ralf  |0 P:(DE-Juel1)5344  |b 11  |u fzj 
991 |a Hofzumahaus, Andreas  |0 P:(DE-Juel1)16326  |b 5 
991 |a Taraborrelli, Domenico  |0 P:(DE-Juel1)167439  |b 10 
991 |a Gkatzelis, Georgios  |0 P:(DE-Juel1)165645  |b 4 
991 |a Dorn, Hans-Peter  |0 P:(DE-Juel1)16317  |b 3 
991 |a Bohn, Birger  |0 P:(DE-Juel1)2693  |b 2 
991 |a Vereecken, Luc  |0 P:(DE-Juel1)167140  |b 1