This title appears in the Scientific Report : 2020 

Kinetic modeling of seeded nitrogen in an ITER baseline scenario
Schluck, Friedrich (Corresponding author)
Plasmaphysik; IEK-4
Plasma research express, 2 (2020) 1, S. 015015 -
Philadelphia, PA IOP Publishing Ltd. 2020
10.1088/2516-1067/ab7c2e
Journal Article
Plasma-Wall-Interaction
OpenAccess
OpenAccess
Please use the identifier: http://dx.doi.org/10.1088/2516-1067/ab7c2e in citations.
Please use the identifier: http://hdl.handle.net/2128/24638 in citations.
LEADER 03430coc a2200493uu 4500
001 874254
005 20200423213232.0
024 7 |a 10.1088/2516-1067/ab7c2e  |2 doi 
024 7 |a 2128/24638  |2 Handle 
037 |a FZJ-2020-01345 
082 |a 610 
100 1 |a Schluck, Friedrich  |0 P:(DE-Juel1)172648  |b 0  |e Corresponding author 
245 |a Kinetic modeling of seeded nitrogen in an ITER baseline scenario 
260 |a Philadelphia, PA  |c 2020  |b IOP Publishing Ltd. 
520 |a ITER as the next-level fusion device is intended to reliably produce more fusion power than required for sustainably heating its plasma. Modeling has been an essential part of the ITER design and for planning of future experimental campaigns. In a tokamak or stellarator plasma discharge, impurities play a significant role, especially in the edge region. Residual gases, eroded wall material, or even intentionally seeded gases all heavily influence the confinement and, thus, the overall fusion performance. Nitrogen is such a gas envisaged to be seeded into a discharge plasma. By modeling the impurities kinetically using the full three-dimensional Monte-Carlo code package EMC3-EIRENE, we analyze the distribution of nitrogen charge-state resolved in a seeded ITER baseline scenario and draw conclusions for the hydrogen background plasma density. Lastly, we compare the influence of a more refined kinetic ion transport in EIRENE including additional physical effects on the impurity density. 
588 |a Dataset connected to CrossRef 
773 |a 10.1088/2516-1067/ab7c2e  |g Vol. 2, no. 1, p. 015015 -  |0 PERI:(DE-600)2953569-4  |n 1  |p 015015 -  |t Plasma research express  |v 2  |y 2020  |x 2516-1067 
856 0 |f h.lexis@fz-juelich.de 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf?subformat=pdfa 
876 7 |c 0.00  |e Hybrid-OA  |d 2020-03-02  |j Offsetting  |l Offsetting: IOP  |p PREX-100176.R2  |9 2020-03-02  |x ZB 
909 C O |o oai:juser.fz-juelich.de:874254  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)172648 
913 1 |a DE-HGF  |b Forschungsbereich Energie  |l Kernfusion  |1 G:(DE-HGF)POF3-170  |0 G:(DE-HGF)POF3-174  |2 G:(DE-HGF)POF3-100  |v Plasma-Wall-Interaction  |x 0 
914 1 |y 2020 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
961 |a h.lexis@fz-juelich.de  |i 2020-04-02T11:44:42.421355  |c 2020-04-02T14:31:27.764516  |z 2020-04-02T14:31:27.764516  |x 2020-03-02T11:56:38.175839 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)IEK-4-20101013 
980 |a APC 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Plasma-Wall-Interaction  |0 G:(DE-HGF)POF3-174  |c POF3-174  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1585830600_11669  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Energy 2.0 / week  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Plasmaphysik; IEK-4  |0 I:(DE-Juel1)IEK-4-20101013  |l Plasmaphysik  |x 0 
990 |a Schluck, Friedrich  |0 P:(DE-Juel1)172648  |b 0  |e Corresponding author