This title appears in the Scientific Report : 2020 

Deuterium retention in tungsten and reduced activation steels after 3 MeV proton irradiation
Möller, S. (Corresponding author)
Krug, R. / Rayaprolu, R. / Kuhn, B. / Joußen, E. / Kreter, A.
Werkstoffsynthese und Herstellungsverfahren; IEK-1
Betriebslabor; S-L
Werkstoffstruktur und -eigenschaften; IEK-2
Plasmaphysik; IEK-4
Nuclear materials and energy, 23 (2020) S. 100742
Amsterdam [u.a.] Elsevier 2020
10.1016/j.nme.2020.100742
Plasma-Facing Materials and Components for Fusion Applications, Eindhoven
Journal Article
Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
Plasma-Wall-Interaction
Energy > 0
Get full text
OpenAccess
Get full text
OpenAccess
Please use the identifier: http://dx.doi.org/10.1016/j.nme.2020.100742 in citations.
Please use the identifier: http://hdl.handle.net/2128/24634 in citations.
LEADER 06370coc a2200901uu 4500
001 874386
005 20200423213235.0
024 7 |a 10.1016/j.nme.2020.100742  |2 doi 
024 7 |a 2128/24634  |2 Handle 
037 |a FZJ-2020-01406 
082 |a 624 
100 1 |a Möller, S.  |0 P:(DE-Juel1)139534  |b 0  |e Corresponding author 
111 2 |a Plasma-Facing Materials and Components for Fusion Applications  |c Eindhoven  |g PFMC-17 
245 |a Deuterium retention in tungsten and reduced activation steels after 3 MeV proton irradiation 
260 |a Amsterdam [u.a.]  |c 2020  |b Elsevier 
520 |a Nuclear fusion plasma-facing materials (PFM) will suffer from irradiation, leading to significant changes in the material properties. This study investigates the impact ofdisplacement damage on the deuterium retention near room temperature. ITER grade tungsten, Eurofer-97, and HiperFer 17Cr5 steel samples are irradiated with a tandem accelerator with ∼3 MeV protons at currents of 100-600 nA on 250-550 µm spots at 320±10 K. In total 33 spots from 0 to 0.9 displacements per atom (DPA) at 0-4 µm depth are irradiated on 5 samples. After irradiation, the samples are exposed to D2 plasmas with a peak ion-flux of 2.1*1021 D/m²s for 4 h at <420 K in PSI-2. Lastly, D retention is measured via 3He nuclear reaction analysis with a spot size of 200 µm up to 4.5 µm depth. The long-term D retention in both W and steel increases with DPA with a saturation starting around 0.2 DPA. Retention in W increased by a factor 12 with up to 3.2 at.% D, while in steel increases up to 180 times with up to 0.08 at.% D were observed. The results highlight the importance of using steels also in PFMs. Compatibility of the results with heavy ion irradiations boosts the confidence in inter-comparability between different ion types, but also between ions and neutrons. 
588 |a Dataset connected to CrossRef 
650 2 7 |a Materials Science  |0 V:(DE-MLZ)SciArea-180  |2 V:(DE-HGF)  |x 0 
650 1 7 |a Energy  |0 V:(DE-MLZ)GC-110  |2 V:(DE-HGF)  |x 0 
700 1 |a Krug, R.  |0 P:(DE-Juel1)172718  |b 1 
700 1 |a Rayaprolu, R.  |0 P:(DE-Juel1)166421  |b 2  |u fzj 
700 1 |a Kuhn, B.  |0 P:(DE-Juel1)129742  |b 3 
700 1 |a Joußen, E.  |0 P:(DE-Juel1)132477  |b 4  |u fzj 
700 1 |a Kreter, A.  |0 P:(DE-Juel1)130070  |b 5  |u fzj 
773 |a 10.1016/j.nme.2020.100742  |g p. 100742 -  |0 PERI:(DE-600)2808888-8  |p 100742  |t Nuclear materials and energy  |v 23  |y 2020  |x 2352-1791 
856 0 |f h.lexis@fz-juelich.de 
856 4 |u http://juser.fz-juelich.de/record/874386/files/Invoice_OAD0000035702.pdf 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/874386/files/1-s2.0-S2352179120300181-main.pdf 
856 4 |x pdfa  |u http://juser.fz-juelich.de/record/874386/files/Invoice_OAD0000035702.pdf?subformat=pdfa 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/874386/files/1-s2.0-S2352179120300181-main.pdf?subformat=pdfa 
876 7 |c 880.00  |e APC  |d 2020-03-11  |j Zahlung erfolgt  |8 OAD0000035702  |9 2020-03-09  |x ZB 
909 C O |o oai:juser.fz-juelich.de:874386  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p ec_fundedresources  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)139534 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)172718 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)166421 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)129742 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 4  |6 P:(DE-Juel1)132477 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 5  |6 P:(DE-Juel1)130070 
913 1 |a DE-HGF  |b Forschungsbereich Energie  |l Kernfusion  |1 G:(DE-HGF)POF3-170  |0 G:(DE-HGF)POF3-174  |2 G:(DE-HGF)POF3-100  |v Plasma-Wall-Interaction  |x 0 
914 1 |y 2020 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a DBCoverage  |0 StatID:(DE-HGF)0501  |2 StatID  |b DOAJ Seal 
915 |a WoS  |0 StatID:(DE-HGF)0112  |2 StatID  |b Emerging Sources Citation Index 
915 |a DBCoverage  |0 StatID:(DE-HGF)0500  |2 StatID  |b DOAJ 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a Peer Review  |0 StatID:(DE-HGF)0030  |2 StatID  |b DOAJ : Peer review 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List 
961 |a h.lexis@fz-juelich.de  |i 2020-04-02T11:45:05.310106  |c 2020-04-02T12:58:39.072612  |z 2020-04-02T12:58:39.072612  |x 2020-03-06T11:03:02.343867 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)IEK-1-20101013 
980 |a I:(DE-Juel1)IEK-4-20101013 
980 |a I:(DE-Juel1)IEK-2-20101013 
980 |a I:(DE-Juel1)S-L-20150915 
980 |a APC 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium  |0 G:(EU-Grant)633053  |c 633053  |f EURATOM-Adhoc-2014-20  |x 1 
536 |a Plasma-Wall-Interaction  |0 G:(DE-HGF)POF3-174  |c POF3-174  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1585824891_12395  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Energy 2.0 / week  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Werkstoffsynthese und Herstellungsverfahren; IEK-1  |0 I:(DE-Juel1)IEK-1-20101013  |l Werkstoffsynthese und Herstellungsverfahren  |x 0 
920 |k Betriebslabor; S-L  |0 I:(DE-Juel1)S-L-20150915  |l Betriebslabor  |x 3 
920 |k Werkstoffstruktur und -eigenschaften; IEK-2  |0 I:(DE-Juel1)IEK-2-20101013  |l Werkstoffstruktur und -eigenschaften  |x 2 
920 |k Plasmaphysik; IEK-4  |0 I:(DE-Juel1)IEK-4-20101013  |l Plasmaphysik  |x 1 
990 |a Möller, Sören  |0 P:(DE-Juel1)139534  |b 0  |e Corresponding author 
991 |a Kreter, Arkadi  |0 P:(DE-Juel1)130070  |b 5  |u fzj 
991 |a Joussen, Eckhard  |0 P:(DE-Juel1)132477  |b 4  |u fzj 
991 |a Kuhn, Bernd  |0 P:(DE-Juel1)129742  |b 3 
991 |a Rayaprolu, Rahul  |0 P:(DE-Juel1)166421  |b 2  |u fzj 
991 |a Krug, Robert  |0 P:(DE-Juel1)172718  |b 1