Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2020 

Applications of radiomics and machine learning for radiotherapy of malignant brain tumors

Applications of radiomics and machine learning for radiotherapy of malignant brain tumors

BackgroundMagnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumo...

More

Saved in:
Personal Name(s): Kocher, Martin (Corresponding author)
Ruge, Maximilian I. / Galldiks, Norbert / Lohmann, Philipp
Contributing Institute: Physik der Medizinischen Bildgebung; INM-4
Kognitive Neurowissenschaften; INM-3
Published in: Strahlentherapie und Onkologie, 196 (2020) S. 856–867
Imprint: Heidelberg Springer Medizin 2020
DOI: 10.1007/s00066-020-01626-8
PubMed ID: 32394100
Document Type: Journal Article
Research Program: (Dys-)function and Plasticity
Link: OpenAccess
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1007/s00066-020-01626-8 in citations.
Please use the identifier: http://hdl.handle.net/2128/25766 in citations.

  • Description
  • Staff View
LEADER 05881nam a2200769 a 4500
001 875334
005 20210130004918.0
024 7 |a 10.1007/s00066-020-01626-8  |2 doi 
024 7 |a 0039-2073  |2 ISSN 
024 7 |a 0179-7158  |2 ISSN 
024 7 |a 1439-099X  |2 ISSN 
024 7 |a 2128/25766  |2 Handle 
024 7 |a pmid:32394100  |2 pmid 
024 7 |a WOS:000531760500002  |2 WOS 
037 |a FZJ-2020-01957 
082 |a 610 
100 1 |a Kocher, Martin  |0 P:(DE-Juel1)173675  |b 0  |e Corresponding author 
245 |a Applications of radiomics and machine learning for radiotherapy of malignant brain tumors 
260 |a Heidelberg  |c 2020  |b Springer Medizin 
520 |a BackgroundMagnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumors.MethodsThis study is based on comprehensive literature research on machine learning and radiomics analyses in neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases.ResultsFeature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the determination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection, automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differentiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high diagnostic accuracies of 80–90% can be achieved by most approaches, despite a large variety in terms of applied imaging techniques and computational methods.ConclusionClinical application of automated image analyses based on radiomics and artificial intelligence has a great potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with these techniques is the large variability and the lack of standardization of the methods applied. 
588 |a Dataset connected to CrossRef 
700 1 |a Ruge, Maximilian I.  |0 P:(DE-HGF)0  |b 1 
700 1 |a Galldiks, Norbert  |0 P:(DE-Juel1)143792  |b 2  |u fzj 
700 1 |a Lohmann, Philipp  |0 P:(DE-Juel1)145110  |b 3  |u fzj 
773 |a 10.1007/s00066-020-01626-8  |0 PERI:(DE-600)2003907-4  |p 856–867  |t Strahlentherapie und Onkologie  |v 196  |y 2020  |x 1439-099X 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/875334/files/Kocher2020_Article_ApplicationsOfRadiomicsAndMach.pdf 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/875334/files/Kocher2020_Article_ApplicationsOfRadiomicsAndMach.pdf?subformat=pdfa 
909 C O |o oai:juser.fz-juelich.de:875334  |p openaire  |p open_access  |p VDB  |p driver  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)173675 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)143792 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)145110 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-572  |2 G:(DE-HGF)POF3-500  |v (Dys-)function and Plasticity  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2020 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a DBCoverage  |0 StatID:(DE-HGF)1050  |2 StatID  |b BIOSIS Previews 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b STRAHLENTHER ONKOL : 2017 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a WoS  |0 StatID:(DE-HGF)0110  |2 StatID  |b Science Citation Index 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a IF < 5  |0 StatID:(DE-HGF)9900  |2 StatID 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)1110  |2 StatID  |b Current Contents - Clinical Medicine 
915 |a Nationallizenz  |0 StatID:(DE-HGF)0420  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)INM-3-20090406 
980 |a I:(DE-Juel1)INM-4-20090406 
980 1 |a FullTexts 
536 |a (Dys-)function and Plasticity  |0 G:(DE-HGF)POF3-572  |c POF3-572  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1601042167_15242  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |l yes 
920 |k Physik der Medizinischen Bildgebung; INM-4  |0 I:(DE-Juel1)INM-4-20090406  |l Physik der Medizinischen Bildgebung  |x 1 
920 |k Kognitive Neurowissenschaften; INM-3  |0 I:(DE-Juel1)INM-3-20090406  |l Kognitive Neurowissenschaften  |x 0 
990 |a Kocher, Martin  |0 P:(DE-Juel1)173675  |b 0  |e Corresponding author 
991 |a Lohmann, Philipp  |0 P:(DE-Juel1)145110  |b 3  |u fzj 
991 |a Galldiks, Norbert  |0 P:(DE-Juel1)143792  |b 2  |u fzj 
991 |a Ruge, Maximilian I.  |0 P:(DE-HGF)0  |b 1 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...