This title appears in the Scientific Report :
2020
Please use the identifier:
http://dx.doi.org/10.7554/eLife.56500 in citations.
Please use the identifier: http://hdl.handle.net/2128/25308 in citations.
Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion
Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion
Malaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease. Even though parasites initially adhere to RBCs with a random orientation, they need to align their apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations of a RBC a...
Saved in:
Personal Name(s): | Hillringhaus, Sebastian |
---|---|
Dasanna, Anil K / Gompper, Gerhard / Fedosov, Dmitry A (Corresponding author) | |
Contributing Institute: |
JARA - HPC; JARA-HPC Theoretische Physik der Lebenden Materie; IBI-5 |
Published in: | eLife, 9 (2020) S. e56500 |
Imprint: |
Cambridge
eLife Sciences Publications
2020
|
DOI: |
10.7554/eLife.56500 |
PubMed ID: |
32420874 |
Document Type: |
Journal Article |
Research Program: |
Formation of Polymer-Particle Aggregates in Blood Flow Physical Basis of Diseases |
Link: |
Get full text Get full text OpenAccess OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/25308 in citations.
LEADER | 05714nam a2200853 a 4500 | ||
---|---|---|---|
001 | 875444 | ||
005 | 20220930130239.0 | ||
024 | 7 | |a 10.7554/eLife.56500 |2 doi | |
024 | 7 | |a 2128/25308 |2 Handle | |
024 | 7 | |a altmetric:82274185 |2 altmetric | |
024 | 7 | |a pmid:32420874 |2 pmid | |
024 | 7 | |a WOS:000538460900001 |2 WOS | |
037 | |a FZJ-2020-02039 | ||
082 | |a 600 | ||
100 | 1 | |a Hillringhaus, Sebastian |0 P:(DE-Juel1)168547 |b 0 | |
245 | |a Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion | ||
260 | |a Cambridge |c 2020 |b eLife Sciences Publications | ||
520 | |a Malaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease. Even though parasites initially adhere to RBCs with a random orientation, they need to align their apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations of a RBC and parasite, where both interact through discrete stochastic bonds, we show that parasite alignment is governed by the combination of RBC membrane deformability and dynamics of adhesion bonds. The stochastic nature of bond-based interactions facilitates a diffusive-like re-orientation of the parasite at the RBC membrane, while RBC deformation aids in the establishment of apex-membrane contact through partial parasite wrapping by the membrane. This bond-based model for parasite adhesion quantitatively captures alignment times measured experimentally and demonstrates that alignment times increase drastically with increasing rigidity of the RBC membrane. Our results suggest that the alignment process is mediated simply by passive parasite adhesion. | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Dasanna, Anil K |0 P:(DE-Juel1)176819 |b 1 | |
700 | 1 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 | |
700 | 1 | |a Fedosov, Dmitry A |0 P:(DE-Juel1)140336 |b 3 |e Corresponding author | |
773 | |a 10.7554/eLife.56500 |g Vol. 9, p. e56500 |0 PERI:(DE-600)2687154-3 |p e56500 |t eLife |v 9 |y 2020 |x 2050-084X | ||
856 | 4 | |u http://juser.fz-juelich.de/record/875444/files/eLife_invoice_P004347.pdf | |
856 | 4 | |u http://juser.fz-juelich.de/record/875444/files/eLife_invoice_P004347.pdf?subformat=pdfa |x pdfa | |
856 | 4 | |u http://juser.fz-juelich.de/record/875444/files/elife-56500-v2.pdf |y OpenAccess | |
856 | 4 | |u http://juser.fz-juelich.de/record/875444/files/elife-56500-v2.pdf?subformat=pdfa |x pdfa |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:875444 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168547 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176819 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130665 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140336 | |
913 | 1 | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 | |
914 | 1 | |y 2020 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2017 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ | ||
915 | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC | ||
915 | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2017 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List | ||
980 | |a journal | ||
980 | |a VDB | ||
980 | |a I:(DE-Juel1)IBI-5-20200312 | ||
980 | |a I:(DE-82)080012_20140620 | ||
980 | |a APC | ||
980 | |a UNRESTRICTED | ||
980 | 1 | |a APC | |
980 | 1 | |a FullTexts | |
536 | |a Formation of Polymer-Particle Aggregates in Blood Flow |0 G:(DE-Juel1)jiff44_20180501 |c jiff44_20180501 |f Formation of Polymer-Particle Aggregates in Blood Flow |x 1 | ||
536 | |a Physical Basis of Diseases |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600424307_21844 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
920 | |l yes | ||
920 | |k JARA - HPC; JARA-HPC |0 I:(DE-82)080012_20140620 |l JARA - HPC |x 1 | ||
920 | |k Theoretische Physik der Lebenden Materie; IBI-5 |0 I:(DE-Juel1)IBI-5-20200312 |l Theoretische Physik der Lebenden Materie |x 0 | ||
990 | |a Hillringhaus, Sebastian |0 P:(DE-Juel1)168547 |b 0 | ||
991 | |a Fedosov, Dmitry |0 P:(DE-Juel1)140336 |b 3 |e Corresponding author | ||
991 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 | ||
991 | |a Dasanna, Anil Kumar |0 P:(DE-Juel1)176819 |b 1 |