This title appears in the Scientific Report :
2021
Please use the identifier:
http://hdl.handle.net/2128/27100 in citations.
Please use the identifier: http://dx.doi.org/10.1103/PhysRevE.103.012120 in citations.
Two-dimensional critical systems with mixed boundary conditions: Exact Ising results from conformal invariance and boundary-operator expansions
Two-dimensional critical systems with mixed boundary conditions: Exact Ising results from conformal invariance and boundary-operator expansions
With conformal-invariance methods, Burkhardt, Guim, and Xue studied the critical Ising model, defined on the upper half plane y>0 with different boundary conditions a and b on the negative and positive x axes. For ab=−+ and f+, they determined the one- and two-point averages of the spin σ and ene...
Saved in:
Personal Name(s): | Burkhardt, T. W. |
---|---|
Eisenriegler, E. (Corresponding author) | |
Contributing Institute: |
Theoretische Physik der Lebenden Materie; IBI-5 |
Published in: | Physical Review E Physical review / E, 103 103 (2021 2021) 1 1, S. 012120 012120 |
Imprint: |
Woodbury, NY
Inst.
2021
2021-01-19 2021-01-01 |
DOI: |
10.1103/PhysRevE.103.012120 |
Document Type: |
Journal Article |
Research Program: |
Molecular and Cellular Information Processing |
Link: |
OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://dx.doi.org/10.1103/PhysRevE.103.012120 in citations.
LEADER | 09351nam a2201225 a 4500 | ||
---|---|---|---|
001 | 890364 | ||
005 | 20240610120129.0 | ||
024 | 7 | |a 10.1103/PhysRevE.103.012120 |2 doi | |
024 | 7 | |a 1063-651X |2 ISSN | |
024 | 7 | |a 1095-3787 |2 ISSN | |
024 | 7 | |a 1538-4519 |2 ISSN | |
024 | 7 | |a 1539-3755 |2 ISSN | |
024 | 7 | |a 1550-2376 |2 ISSN | |
024 | 7 | |a 2470-0045 |2 ISSN | |
024 | 7 | |a 2470-0053 |2 ISSN | |
024 | 7 | |a 2470-0061 |2 ISSN | |
024 | 7 | |a 2128/27100 |2 Handle | |
024 | 7 | |a WOS:000608619900005 |2 WOS | |
024 | 7 | |a altmetric:88021445 |2 altmetric | |
037 | |a FZJ-2021-00909 | ||
082 | |a 530 | ||
100 | 1 | |a Burkhardt, T. W. |0 P:(DE-HGF)0 |b 0 | |
245 | |a Two-dimensional critical systems with mixed boundary conditions: Exact Ising results from conformal invariance and boundary-operator expansions | ||
260 | |a Woodbury, NY |c 2021 |b Inst. | ||
264 | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2021-01-19 | |
264 | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2021-01-01 | |
520 | |a With conformal-invariance methods, Burkhardt, Guim, and Xue studied the critical Ising model, defined on the upper half plane y>0 with different boundary conditions a and b on the negative and positive x axes. For ab=−+ and f+, they determined the one- and two-point averages of the spin σ and energy ε. Here +,−, and f stand for spin-up, spin-down, and free-spin boundaries, respectively. The case +−+−+⋯, where the boundary condition switches between + and − at arbitrary points, ζ1,ζ2,⋯ on the x axis was also analyzed. In the first half of this paper a similar study is carried out for the alternating boundary condition +f+f+⋯ and the case −f+ of three different boundary conditions. Exact results for the one- and two-point averages of σ,ε, and the stress tensor T are derived with conformal-invariance methods. From the results for ⟨T⟩, the critical Casimir interaction with the boundary of a wedge-shaped inclusion is derived for mixed boundary conditions. In the second half of the paper, arbitrary two-dimensional critical systems with mixed boundary conditions are analyzed with boundary-operator expansions. Two distinct types of expansions—away from switching points of the boundary condition and at switching points—are considered. Using the expansions, we express the asymptotic behavior of two-point averages near boundaries in terms of one-point averages. We also consider the strip geometry with mixed boundary conditions and derive the distant-wall corrections to one-point averages near one edge due to the other edge. Finally we confirm the consistency of the predictions obtained with conformal-invariance methods and with boundary-operator expansions, in the the first and second halves of the paper. | ||
542 | |i 2021-01-19 |2 Crossref |u https://link.aps.org/licenses/aps-default-license | ||
588 | |a Dataset connected to CrossRef | ||
700 | 1 | |a Eisenriegler, E. |0 P:(DE-Juel1)130628 |b 1 |e Corresponding author | |
773 | 1 | 8 | |a 10.1103/physreve.103.012120 |b American Physical Society (APS) |d 2021-01-19 |n 1 |p 012120 |3 journal-article |2 Crossref |t Physical Review E |v 103 |y 2021 |x 2470-0045 |
773 | |a 10.1103/PhysRevE.103.012120 |g Vol. 103, no. 1, p. 012120 |0 PERI:(DE-600)2844562-4 |n 1 |p 012120 |t Physical review / E |v 103 |y 2021 |x 2470-0045 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/890364/files/EV11863PUBLISHED.pdf |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:890364 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130628 | |
913 | 0 | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Functional Macromolecules and Complexes |x 0 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |x 0 | |
914 | 1 | |y 2021 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 | ||
915 | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV E : 2018 |d 2020-10-13 | ||
915 | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 | ||
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)IBI-5-20200312 | ||
999 | C | 5 | |1 M. E. Fisher |y 1978 |2 Crossref |o M. E. Fisher 1978 |
999 | C | 5 | |1 H. W. Diehl |y 1986 |2 Crossref |t Phase Transitions and Critical Phenomena |o H. W. Diehl Phase Transitions and Critical Phenomena 1986 |
999 | C | 5 | |a 10.1142/S0217979297001751 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/2434 |1 M. Krech |2 Crossref |9 -- missing cx lookup -- |y 1994 |
999 | C | 5 | |a 10.1088/1742-5468/2010/11/P11003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.88.052110 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. L. Cardy |y 1987 |2 Crossref |t Phase Transitions and Critical Phenomena |o J. L. Cardy Phase Transitions and Critical Phenomena 1987 |
999 | C | 5 | |a 10.1016/0550-3213(84)90241-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.66.895 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(91)90370-D |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.36.2080 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.47.14306 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(84)90052-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(86)90596-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(89)90521-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.65.1443 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(91)90828-E |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.70.619 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.70.2051.2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.53.14377 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(93)90005-A |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(95)00476-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.50.10009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.94.032130 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1742-5468/ab7658 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.74.3189 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.78.2867 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.51.13717 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1209/0295-5075/104/21001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1768514 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.3.3918 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0305-4470/17/18/005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 I. S. Gradshteyn |y 1965 |2 Crossref |t Table of Integrals, Series, and Products |o I. S. Gradshteyn Table of Integrals, Series, and Products 1965 |
999 | C | 5 | |a 10.1103/PhysRevB.27.2937 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.50.3894 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.49.1595 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.81.4911 |9 -- missing cx lookup -- |2 Crossref |
536 | |a Molecular and Cellular Information Processing |0 G:(DE-HGF)POF4-524 |c POF4-524 |x 0 |f POF IV | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1612195539_4542 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)IAS-2-20090406 | ||
920 | |k Theoretische Physik der Lebenden Materie; IBI-5 |0 I:(DE-Juel1)IBI-5-20200312 |l Theoretische Physik der Lebenden Materie |x 0 | ||
990 | |a Burkhardt, T. W. |0 P:(DE-HGF)0 |b 0 | ||
991 | |a Eisenriegler, Erich |0 P:(DE-Juel1)130628 |b 1 |e Corresponding author |