This title appears in the Scientific Report :
2021
Please use the identifier:
http://dx.doi.org/10.7554/eLife.68818 in citations.
Please use the identifier: http://hdl.handle.net/2128/28561 in citations.
Effect of malaria parasite shape on its alignment at erythrocyte membrane
Effect of malaria parasite shape on its alignment at erythrocyte membrane
During the blood stage of malaria pathogenesis, parasites invade healthy red blood cells (RBC) to multiply inside the host and evade the immune response. When attached to RBC, the parasite first has to align its apex with the membrane for a successful invasion. Since the parasite's apex sits at...
Saved in:
Personal Name(s): | Dasanna, Anil K |
---|---|
Hillringhaus, Sebastian / Gompper, Gerhard / Fedosov, Dmitry A (Corresponding author) | |
Contributing Institute: |
Theoretische Physik der Lebenden Materie; IBI-5 |
Published in: | eLife, 10 (2021) S. e68818 |
Imprint: |
Cambridge
eLife Sciences Publications
2021
|
DOI: |
10.7554/eLife.68818 |
PubMed ID: |
34286696 |
Document Type: |
Journal Article |
Research Program: |
Information Processing in Distributed Systems |
Link: |
Get full text OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/28561 in citations.
LEADER | 06202nam a2200829 a 4500 | ||
---|---|---|---|
001 | 894167 | ||
005 | 20240610120115.0 | ||
024 | 7 | |a 10.7554/eLife.68818 |2 doi | |
024 | 7 | |a 2128/28561 |2 Handle | |
024 | 7 | |a altmetric:110104765 |2 altmetric | |
024 | 7 | |a pmid:34286696 |2 pmid | |
024 | 7 | |a WOS:000683010100001 |2 WOS | |
037 | |a FZJ-2021-03069 | ||
082 | |a 600 | ||
100 | 1 | |a Dasanna, Anil K |0 P:(DE-Juel1)176819 |b 0 | |
245 | |a Effect of malaria parasite shape on its alignment at erythrocyte membrane | ||
260 | |a Cambridge |c 2021 |b eLife Sciences Publications | ||
520 | |a During the blood stage of malaria pathogenesis, parasites invade healthy red blood cells (RBC) to multiply inside the host and evade the immune response. When attached to RBC, the parasite first has to align its apex with the membrane for a successful invasion. Since the parasite's apex sits at the pointed end of an oval (egg-like) shape with a large local curvature, apical alignment is in general an energetically un-favorable process. Previously, using coarse-grained mesoscopic simulations, we have shown that optimal alignment time is achieved due to RBC membrane deformation and the stochastic nature of bond-based interactions between the parasite and RBC membrane (Hillringhaus et al., 2020). Here, we demonstrate that the parasite's shape has a prominent effect on the alignment process. The alignment times of spherical parasites for intermediate and large bond off-rates (or weak membrane-parasite interactions) are found to be close to those of an egg-like shape. However, for small bond off-rates (or strong adhesion and large membrane deformations), the alignment time for a spherical shape increases drastically. Parasite shapes with large aspect ratios such as oblate and long prolate ellipsoids are found to exhibit very long alignment times in comparison to the egg-like shape. At a stiffened RBC, spherical parasite aligns faster than any other investigated shapes. This study shows that the original egg-like shape performs not worse for parasite alignment than other considered shapes, but is more robust with respect to different adhesion interactions and RBC membrane rigidities. | ||
588 | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | ||
700 | 1 | |a Hillringhaus, Sebastian |0 P:(DE-Juel1)168547 |b 1 | |
700 | 1 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 | |
700 | 1 | |a Fedosov, Dmitry A |0 P:(DE-Juel1)140336 |b 3 |e Corresponding author | |
773 | |a 10.7554/eLife.68818 |g Vol. 10, p. e68818 |0 PERI:(DE-600)2687154-3 |p e68818 |t eLife |v 10 |y 2021 |x 2050-084X | ||
856 | 4 | |u http://juser.fz-juelich.de/record/894167/files/eLife_invoice_P007081.pdf | |
856 | 4 | |y OpenAccess |u http://juser.fz-juelich.de/record/894167/files/elife-68818-v2.pdf | |
909 | C | O | |o oai:juser.fz-juelich.de:894167 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176819 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)168547 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130665 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140336 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5243 |x 0 | |
914 | 1 | |y 2021 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-03 | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2019 |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-03 | ||
915 | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 | ||
915 | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-03 | ||
915 | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 | ||
915 | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2019 |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-03 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 | ||
980 | 1 | |a APC | |
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)IBI-5-20200312 | ||
980 | |a APC | ||
536 | |a Information Processing in Distributed Systems |0 G:(DE-HGF)POF4-5243 |c POF4-524 |f POF IV |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1629383018_14501 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)IAS-2-20090406 | ||
920 | |k Theoretische Physik der Lebenden Materie; IBI-5 |0 I:(DE-Juel1)IBI-5-20200312 |l Theoretische Physik der Lebenden Materie |x 0 | ||
990 | |a Dasanna, Anil Kumar |0 P:(DE-Juel1)176819 |b 0 | ||
991 | |a Fedosov, Dmitry |0 P:(DE-Juel1)140336 |b 3 |e Corresponding author | ||
991 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 2 | ||
991 | |a Hillringhaus, Sebastian |0 P:(DE-Juel1)168547 |b 1 |