This title appears in the Scientific Report :
2021
Please use the identifier:
http://dx.doi.org/10.1007/s10955-021-02709-1 in citations.
Please use the identifier: http://hdl.handle.net/2128/30561 in citations.
A lattice Gas Model for Generic One-Dimensional Hamiltonian Systems
A lattice Gas Model for Generic One-Dimensional Hamiltonian Systems
We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent z=3/2 and symmetric Pr...
Saved in:
Personal Name(s): | Schmidt, J (Corresponding author) |
---|---|
Schütz, G. M. / van Beijeren, H. | |
Contributing Institute: |
Theoretische Physik der Lebenden Materie; IBI-5 Theorie der Weichen Materie und Biophysik; IAS-2 |
Published in: | Journal of statistical physics, 183 (2021) 1, S. 8 |
Imprint: |
New York, NY [u.a.]
Springer Science + Business Media B.V.
2021
|
DOI: |
10.1007/s10955-021-02709-1 |
Document Type: |
Journal Article |
Research Program: |
Molecular Information Processing in Cellular Systems |
Link: |
OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/30561 in citations.
LEADER | 04885nam a2200721 a 4500 | ||
---|---|---|---|
001 | 904537 | ||
005 | 20240610120914.0 | ||
024 | 7 | |a 10.1007/s10955-021-02709-1 |2 doi | |
024 | 7 | |a 0022-4715 |2 ISSN | |
024 | 7 | |a 1572-9613 |2 ISSN | |
024 | 7 | |a 2128/30561 |2 Handle | |
024 | 7 | |a altmetric:93786622 |2 altmetric | |
024 | 7 | |a WOS:000635906900001 |2 WOS | |
037 | |a FZJ-2021-06107 | ||
082 | |a 530 | ||
100 | 1 | |a Schmidt, J |0 P:(DE-HGF)0 |b 0 |e Corresponding author | |
245 | |a A lattice Gas Model for Generic One-Dimensional Hamiltonian Systems | ||
260 | |a New York, NY [u.a.] |c 2021 |b Springer Science + Business Media B.V. | ||
520 | |a We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent z=3/2 and symmetric Prähofer-Spohn scaling function) and a superdiffusive heat mode with dynamical exponent z=5/3 and symmetric Lévy scaling function. The lattice gas model is amenable to efficient numerical simulation. Our main findings, obtained from dynamical Monte-Carlo simulation, are: (i) The frequently observed numerical asymmetry of the sound modes is a finite time effect. (ii) The mode-coupling calculation of the scale factor for the 5/3-Lévy-mode gives at least the right order of magnitude. (iii) There are significant diffusive corrections which are non-universal. | ||
588 | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | ||
700 | 1 | |a Schütz, G. M. |0 P:(DE-Juel1)130966 |b 1 | |
700 | 1 | |a van Beijeren, H. |0 P:(DE-HGF)0 |b 2 | |
773 | |a 10.1007/s10955-021-02709-1 |g Vol. 183, no. 1, p. 8 |0 PERI:(DE-600)2017302-7 |n 1 |p 8 |t Journal of statistical physics |v 183 |y 2021 |x 0022-4715 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/904537/files/Schmidt2021_Article_ALatticeGasModelForGenericOne-.pdf |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:904537 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130966 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 | |
914 | 1 | |y 2021 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 | ||
915 | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 | ||
915 | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2021-01-29 |w ger | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-29 | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J STAT PHYS : 2019 |d 2021-01-29 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 | ||
915 | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 | ||
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)IBI-5-20200312 | ||
980 | |a I:(DE-Juel1)IAS-2-20090406 | ||
536 | |a Molecular Information Processing in Cellular Systems |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643123017_12994 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)IAS-2-20090406 | ||
920 | |k Theoretische Physik der Lebenden Materie; IBI-5 |0 I:(DE-Juel1)IBI-5-20200312 |l Theoretische Physik der Lebenden Materie |x 0 | ||
920 | |k Theorie der Weichen Materie und Biophysik; IAS-2 |0 I:(DE-Juel1)IAS-2-20090406 |l Theorie der Weichen Materie und Biophysik |x 1 | ||
990 | |a Schmidt, J |0 P:(DE-HGF)0 |b 0 |e Corresponding author | ||
991 | |a van Beijeren, H. |0 P:(DE-HGF)0 |b 2 | ||
991 | |a Schütz, Gunter M. |0 P:(DE-Juel1)130966 |b 1 |