This title appears in the Scientific Report :
2022
Please use the identifier:
http://dx.doi.org/10.1063/5.0091067 in citations.
Please use the identifier: http://hdl.handle.net/2128/31268 in citations.
Alignment and propulsion of squirmer pusher–puller dumbbells
Alignment and propulsion of squirmer pusher–puller dumbbells
The properties of microswimmer dumbbells composed of pusher–puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a...
Saved in:
Personal Name(s): | Clopés, Judit |
---|---|
Gompper, Gerhard (Corresponding author) / Winkler, Roland G. (Corresponding author) | |
Contributing Institute: |
Theorie der Weichen Materie und Biophysik; IAS-2 JARA-SOFT; JARA-SOFT JARA - HPC; JARA-HPC Theoretische Physik der Lebenden Materie; IBI-5 |
Published in: | The journal of chemical physics, 156 (2022) 19, S. 194901 |
Imprint: |
Melville, NY
American Institute of Physics
2022
|
DOI: |
10.1063/5.0091067 |
Document Type: |
Journal Article |
Research Program: |
Information Processing in Distributed Systems |
Link: |
Get full text OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://hdl.handle.net/2128/31268 in citations.
LEADER | 05914nam a2200793 a 4500 | ||
---|---|---|---|
001 | 907775 | ||
005 | 20240610121328.0 | ||
024 | 7 | |a 10.1063/5.0091067 |2 doi | |
024 | 7 | |a 0021-9606 |2 ISSN | |
024 | 7 | |a 1089-7690 |2 ISSN | |
024 | 7 | |a 1520-9032 |2 ISSN | |
024 | 7 | |a 2128/31268 |2 Handle | |
024 | 7 | |a 35597650 |2 pmid | |
024 | 7 | |a WOS:000798560600010 |2 WOS | |
037 | |a FZJ-2022-02204 | ||
082 | |a 530 | ||
100 | 1 | |a Clopés, Judit |0 P:(DE-Juel1)174327 |b 0 | |
245 | |a Alignment and propulsion of squirmer pusher–puller dumbbells | ||
260 | |a Melville, NY |c 2022 |b American Institute of Physics | ||
520 | |a The properties of microswimmer dumbbells composed of pusher–puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers’ flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher–puller pairs with an equal magnitude of the active stresses depend only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers’ propulsion directions with respect to each other, as well as the bond vector. The orientational coupling is most pro- nounced for pairs with large differences in the active-stress magnitude. The alignment of the squirmers’ propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells, which is faster for strong pushers and slower for strong pullers. | ||
588 | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | ||
700 | 1 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 1 |e Corresponding author | |
700 | 1 | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 2 |e Corresponding author | |
773 | |a 10.1063/5.0091067 |g Vol. 156, no. 19, p. 194901 - |0 PERI:(DE-600)1473050-9 |n 19 |p 194901 |t The journal of chemical physics |v 156 |y 2022 |x 0021-9606 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/907775/files/Invoice_JCP22-AR-00885_00744.pdf | |
856 | 4 | |u http://juser.fz-juelich.de/record/907775/files/clopes_gompper_winkler_jcp_156.194901.2022.pdf |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:907775 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130665 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131039 | |
913 | 1 | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5243 |x 0 | |
914 | 1 | |y 2022 | |
915 | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 | ||
915 | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC | ||
915 | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-25 |w ger | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-25 | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2021 |d 2022-11-25 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-25 | ||
915 | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-25 | ||
915 | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-25 | ||
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a I:(DE-Juel1)IAS-2-20090406 | ||
980 | |a I:(DE-Juel1)IBI-5-20200312 | ||
980 | |a I:(DE-82)080012_20140620 | ||
980 | |a I:(DE-82)080008_20150909 | ||
980 | |a UNRESTRICTED | ||
980 | |a APC | ||
536 | |a Information Processing in Distributed Systems |0 G:(DE-HGF)POF4-5243 |c POF4-524 |f POF IV |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655095385_30926 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
981 | |a I:(DE-Juel1)IAS-2-20090406 | ||
920 | |k Theorie der Weichen Materie und Biophysik; IAS-2 |0 I:(DE-Juel1)IAS-2-20090406 |l Theorie der Weichen Materie und Biophysik |x 0 | ||
920 | |k JARA-SOFT; JARA-SOFT |0 I:(DE-82)080008_20150909 |l JARA-SOFT |x 3 | ||
920 | |k JARA - HPC; JARA-HPC |0 I:(DE-82)080012_20140620 |l JARA - HPC |x 2 | ||
920 | |k Theoretische Physik der Lebenden Materie; IBI-5 |0 I:(DE-Juel1)IBI-5-20200312 |l Theoretische Physik der Lebenden Materie |x 1 | ||
990 | |a Clopes, Judit |0 P:(DE-Juel1)174327 |b 0 | ||
991 | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 2 |e Corresponding author | ||
991 | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 1 |e Corresponding author |