This title appears in the Scientific Report :
2022
Please use the identifier:
http://hdl.handle.net/2128/32790 in citations.
Please use the identifier: http://dx.doi.org/10.1039/D2RE00282E in citations.
CFD modeling of a membrane reactor concept for integrated CO 2 capture and conversion
CFD modeling of a membrane reactor concept for integrated CO 2 capture and conversion
Capturing CO2 and converting it into valuable products represents a future direction of carbon emissions reduction. The emergence of CO2-permeable membranes has opened up a broad range of new opportunities for efficient CO2 capture and conversion. In this context, this study develops a membrane reac...
Saved in:
Personal Name(s): | Huang, Hong (Corresponding author) |
---|---|
Samsun, Remzi Can / Peters, Ralf / Stolten, Detlef | |
Contributing Institute: |
Technoökonomische Systemanalyse; IEK-3 Elektrochemische Verfahrenstechnik; IEK-14 |
Published in: | Reaction chemistry & engineering, 7 (2022) 12, S. 2573-2581 |
Imprint: |
Cambridge
Royal Society of Chemistry
2022
|
DOI: |
10.1039/D2RE00282E |
Document Type: |
Journal Article |
Research Program: |
Societally Feasible Transformation Pathways Effective System Transformation Pathways Power-based Fuels and Chemicals |
Link: |
OpenAccess |
Publikationsportal JuSER |
Please use the identifier: http://dx.doi.org/10.1039/D2RE00282E in citations.
LEADER | 06582nam a2200829 a 4500 | ||
---|---|---|---|
001 | 910294 | ||
005 | 20230308201754.0 | ||
024 | 7 | |a 10.1039/D2RE00282E |2 doi | |
024 | 7 | |a 2128/32790 |2 Handle | |
024 | 7 | |a WOS:000849927700001 |2 WOS | |
037 | |a FZJ-2022-03729 | ||
082 | |a 540 | ||
100 | 1 | |a Huang, Hong |0 P:(DE-Juel1)177000 |b 0 |e Corresponding author | |
245 | |a CFD modeling of a membrane reactor concept for integrated CO 2 capture and conversion | ||
260 | |a Cambridge |c 2022 |b Royal Society of Chemistry | ||
520 | |a Capturing CO2 and converting it into valuable products represents a future direction of carbon emissions reduction. The emergence of CO2-permeable membranes has opened up a broad range of new opportunities for efficient CO2 capture and conversion. In this context, this study develops a membrane reactor concept using a ceramic–carbonate dual-phase membrane for integrated CO2 capture and conversion. The membrane reactor has two concentric tubes, with the inner tube being for the flue gas to provide a CO2 source and the outer for the CO2 conversion. The catalyst is coated on the membrane surface instead of being packed in the reactor bed so that the permeated CO2 can be immediately converted, and the CO2 permeation flux can be significantly promoted in this manner. The performance of the developed membrane reactor concept is evaluated based on CFD simulations. The membrane reactor can achieve high CO2 capture rates of over 90% and conversions of up to 95% for the reaction of the reverse water gas shift. The CO productivity is limited by the membrane permeation flux and large reactor volume, and can be increased by compact designs that increase the ratio of the membrane area to the reactor volume, which are simple but effective approaches to increasing CO productivity, but maintain high CO2 capture rates and conversions. The developed membrane reactor concept can be readily applied to any other reaction for integrated CO2 capture and conversion. | ||
588 | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | ||
700 | 1 | |a Samsun, Remzi Can |0 P:(DE-Juel1)129916 |b 1 |u fzj | |
700 | 1 | |a Peters, Ralf |0 P:(DE-Juel1)129902 |b 2 | |
700 | 1 | |a Stolten, Detlef |0 P:(DE-Juel1)129928 |b 3 |u fzj | |
773 | |a 10.1039/D2RE00282E |g p. 10.1039.D2RE00282E |0 PERI:(DE-600)2842577-7 |n 12 |p 2573-2581 |t Reaction chemistry & engineering |v 7 |y 2022 |x 2058-9883 | ||
856 | 4 | |u http://juser.fz-juelich.de/record/910294/files/CFD%20modeling%20of%20a%20membrane%20reactor%20concept.pdf |y OpenAccess | |
909 | C | O | |o oai:juser.fz-juelich.de:910294 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |q OpenAPC |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177000 | |
910 | 1 | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)177000 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129916 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129902 | |
910 | 1 | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129928 | |
910 | 1 | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)129928 | |
913 | 1 | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 | |
913 | 1 | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1111 |x 1 | |
913 | 1 | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1112 |x 2 | |
914 | 1 | |y 2022 | |
915 | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC | ||
915 | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 | ||
915 | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 | ||
915 | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-12 |w ger | ||
915 | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REACT CHEM ENG : 2021 |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 | ||
915 | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-12 | ||
915 | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b REACT CHEM ENG : 2021 |d 2022-11-12 | ||
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a TIB: Royal Society of Chemistry 2021 |2 APC |0 PC:(DE-HGF)0110 |
980 | 1 | |a FullTexts | |
980 | |a journal | ||
980 | |a VDB | ||
980 | |a UNRESTRICTED | ||
980 | |a I:(DE-Juel1)IEK-14-20191129 | ||
980 | |a I:(DE-Juel1)IEK-3-20101013 | ||
980 | |a APC | ||
536 | |a Societally Feasible Transformation Pathways |0 G:(DE-HGF)POF4-1112 |c POF4-111 |f POF IV |x 2 | ||
536 | |a Effective System Transformation Pathways |0 G:(DE-HGF)POF4-1111 |c POF4-111 |f POF IV |x 1 | ||
536 | |a Power-based Fuels and Chemicals |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 | ||
336 | |a ARTICLE |2 BibTeX | ||
336 | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669362366_20860 |2 PUB:(DE-HGF) | ||
336 | |a Output Types/Journal article |2 DataCite | ||
336 | |a article |2 DRIVER | ||
336 | |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0) |0 0 |2 EndNote | ||
336 | |a JOURNAL_ARTICLE |2 ORCID | ||
920 | |l yes | ||
920 | |k Technoökonomische Systemanalyse; IEK-3 |0 I:(DE-Juel1)IEK-3-20101013 |l Technoökonomische Systemanalyse |x 1 | ||
920 | |k Elektrochemische Verfahrenstechnik; IEK-14 |0 I:(DE-Juel1)IEK-14-20191129 |l Elektrochemische Verfahrenstechnik |x 0 | ||
990 | |a Huang, Hong |0 P:(DE-Juel1)177000 |b 0 |e Corresponding author | ||
991 | |a Stolten, Detlef |0 P:(DE-Juel1)129928 |b 3 |u fzj | ||
991 | |a Peters, Ralf |0 P:(DE-Juel1)129902 |b 2 | ||
991 | |a Samsun, Remzi Can |0 P:(DE-Juel1)129916 |b 1 |u fzj |